Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Nan Wang^{1#}, Rui Sun^{1#}, Wen Xu^{2*}, *Xue Bai¹*, *Junhua Hu³*, *Siyu Lu⁴*, Donglei Zhou^{1*}, Hongwei Song^{1*}

¹ State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China.

²Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Dalian Minzu University, Dalian, 116600, China.

³State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.

⁴ College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.

*E-mail: Prof. Wen Xu (xuwen@dlnu.edu.cn), Prof. Donglei Zhou (zhoudl@jlu.edu.cn), Prof. Hongwei Song (songhw@jlu.edu.cn)

Experimental

1. Chemicals

1-octadecene (ODE, 90%), oleic acid (OA, 90%), oleylamine (OAm, 70%), cyclohexane, lead chloride (PbCl₂), manganese chloride (MnCl₂), antimony trichloride (SbCl₃), and toluene, ethyl acetate. All chemicals were directly used without further purification.

2. Preparation of Cs-oleate

0.407g of Cs_2CO_3 , 10 ml of ODE, and 1.25 ml OA were loaded into a 20 ml glass bottle. The mixture was heated for 1h at 130 °C until Cs_2CO_3 was completely dissolved to form a clear solution.

3. Synthesis of the Mn^{2+} doped or Mn^{2+} and Sb^{3+} co-doped CsPbCl₃ NCs. The Mn^{2+} doped or Mn^{2+} and Sb^{3+} co-doped CsPbCl₃ NCs were synthesized by hot injection method. In a typical synthesis, 0.375 mmol of PbCl₂, MnCl₂ (and SbCl₃), ODE (10 ml), OA (1ml), and OAm (1ml) were loaded into a 100 ml three-necked flask and heated at 130°C for 1h under N₂ atmosphere. Then the reaction temperature of the mixture was increased to 180°C and 1 ml of the Cs-oleate precursor was rapidly injected. After that, the mixture solution was kept at 180°C for 30s. Then, the reaction solution was cooled in cold water. The Mn^{2+} , Sb^{3+} co-doped CsPbCl₃ NCs were obtained by regulating the molar feed ratio of MnCl₂/SbCl₃.

Characterization: TEM images were collected by Hitachi H-800 at 200KV. HRTEM and mapping were measured by JEM-2100F at 200KV. Absorption spectra collected with UV/visspectrophotometer (Shimadzu UV-1800). were RF-6000 Photoluminescence spectra were recorded on а Shimadzu spectrofluorometer. X-Ray Diffraction (XRD) patterns were measured by using a Bruker D8 diffractometer with Cu Ka radiation. Time-resolved emission decay curves were measured using a PLS980 time correlated single-photon counting (TCSPC) system. Low-temperature fluorescence spectroscopy was acquired using a tuneable optical parameter oscillator (OPO) as the excitation source and a visible photomultiplier (350-850 nm) combined with a double-grating monochromator for spectral collection. X-ray photoelectron spectroscopy (XPS) was collected by Kratos Axis UltraDLD. Absolute emission QY values were measured at room temperature using a commercial integrating sphere installed in FLS980 spectrometer from Edinburgh Instruments. Calibration of the photoluminescence QY value was performed using the standard sample YAG:Ce³⁺ (BM302D, Jiangsu Bree Optronics Co., Ltd, peaking at 551 nm).

Calculation method

First-principle calculations were performed by the density functional theory (DFT) using the Vienna Ab-initio Simulation Package (VASP) package.¹ The generalized gradient approximation (GGA) with the Perdew–Burke–Ernzerhof (PBE) functional were used to describe the electronic exchange and correlation effects.² Uniform G-

centered k-points meshes with a resolution of 2π *0.04 Å-1 and Methfessel-Paxton electronic smearing were adopted for the integration in the Brillouin zone for geometric optimization. The simulation was run with a cutoff energy of 500 eV throughout the computations. These settings ensure convergence of the total energies to within 1 meV per atom. Structure relaxation proceeded until all forces on atoms were less than 1 meV Å-1 and the total stress tensor was within 0.01 GPa of the target value. For the Mn²⁺- and Sb³⁺-doped CsPbCl₃ structure, CsPbCl₃ with tetragonal structure (space group: P4mm) was selected, and then we build a 2*2*2 supercell structure based on CsPbCl₃ unit cell, in which one Pb atom was replaced by Mn and the other Pb atom was replaced by Sb.

Fig. S1. EDS mapping images for (a) CsPbCl₃, (b) CsPbCl₃:Mn²⁺. It can be seen that the elements in each material are evenly distributed.

Fig. S2. (a) XPS total patterns, high-resolution XPS analysis of (b) Cl 2p and (c) Cs 3d for pure CsPbCl₃, CsPbCl₃:Mn²⁺ and CsPbCl₃:Mn²⁺, Sb³⁺ respectively.

Fig. S3. Steady-state PL spectra for CsPbCl₃ NCs with varied the moral ratio of Sb^{3+}/Mn^{2+} upon the excitation of 365 nm source.

Fig. S4. PL spectra of CsPbCl₃ NCs with only Sb³⁺ doping and changing the Sb³⁺/Pb²⁺ molar ratio under excitation at 365 nm .

Fig. S5. (a) Temperature-dependent steady-state spectra (inset: enlarged image inside the dashed box) and (b) corresponding peak position and FWHM curves for CsPbCl₃:Mn²⁺ sample. (c) The plot of integrated PL intensity as a function of temperature for CsPbCl₃:Mn²⁺ sample.

Fig. S6. The optimized structure of (a) CsPbCl₃:Mn²⁺ and (b) CsPbCl₃:Mn²⁺, Sb³⁺ structures.

Fig. S7. Absorption spectra of (a) $CsPbCl_3:Mn^{2+}$ and (b) $CsPbCl_3:Mn^{2+}$, Sb^{3+} samples after anion exchange with varying amounts of $PbBr_2$.

Fig. S8. Time-resolved PL spectra of exciton emission for (a) $CsPbCl_3:Mn^{2+}$ and (b) $CsPbCl_3:Mn^{2+}$, Sb^{3+} samples.

Fig. S9. Device stability for CsPbCl₃:Mn²⁺ (red) and CsPbCl₃:Mn²⁺, Sb³⁺ (blue) samples.

 $\label{eq:sphere:sphe$

Mn/Sb	0.3/0	0.5/0	0.1/0.5	0.3/0.5	0.5/0.5
T _{ave} /ms	1.63	1.73	1.70	1.68	1.67

Mn ²⁺ /Sb ³⁺	0.1/0	0.3/0	0.5/0	0.1/0.5	0.3/0.5	0.5/0.5
A1	9028.43	8526.48	8722.90	9064.97	9773.19	11054.68
T ₁ /ns	1.38	1.31	1.21	1.07	0.95	0.99
A2	1511.07	2067.68	1987.23	1648.21	1001.16	533.07
T ₂ /ns	16.0	10.39	8.04	8.15	5.37	4.41
T _{ave} /ns	10.96	10.39	8.04	8.15	5.37	4.41

Table S2. Emission decay of exciton for CsPbCl₃ NCs with different moral ratios of Mn²⁺/Sb³⁺.

Emission layer materials	EL peak position (nm)	Max EQE (%)	Luminance (cd/m ²)	Ref
Cs ₃ Sb ₂ Br ₉ QDs	408	0.21	29.60	37
Cs ₃ CeBr ₆ crystal	391	0.46	-	38
CsPbCl ₃ :Mg NCs	402	0.1	135	39
CsPbCl ₃ :Mn ²⁺ , Sb ³⁺ NCs	413	0.39	121	This work

Table S3. Summary of the performance of Violet LEDs.

References:

1. Kresse. G.; Furthmuller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. *J. Comput. Mater. Sci.*, 1996, **6**, 15–50.

2. Perdew. J. P.; Burke. K.; Ernzerhof. M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.*, 1996, **77**, 3865–3868.