Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Recyclability of CsPbBr₃ Quantum Dot Glass Nanocomposites for Their Long-Standing Use in White LEDs

Naji Vahedigharehchopogh ^{a, #}, Erdinç Erol ^{a, b, #}, Orhan Kıbrıslı ^a, Aziz Genç ^c, Miray Çelikbilek Ersundu ^{a, *}, Ali Erçin Ersundu ^{a, *}

^a Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Metallurgical and Materials Engineering, Glass Research and Development Laboratory, Istanbul, 34220, Turkey

^b Manisa Celal Bayar University, Department of Metallurgical and Materials Engineering, Muradiye, Manisa, Turkey

^c İzmir Institute of Technology, Faculty of Engineering, Department of Materials Science and Engineering, İzmir, 35430, Turkey

1. Supplementary Figures

Fig. S1 Schematic illustration of applied synthesis and recycling processes for PQD GNCs

Fig. S2 Tauc plots of recycled PQD GNCs

Fig. S3 PLQY mapping of PQD GNCs from the 1st synthesis cycle. (Samples are excited at 360 nm and PLQY values are indicated in each plot.)

Fig. S4 PLQY mapping of PQD GNCs from the 3rd synthesis cycle. (Samples are excited at 360 nm and PLQY values are indicated in each plot.)

Fig. S5 FTIR spectrum of 510-3rd sample before and after immersing in boiling water for 4 h (inset shows the temperature during the boiling process)

Fig. S6 (a) Chemical stability test by immersion in water for 45 days (b) Photostability test under 442 nm laser operating at 500 mW (c) heating-cooling cycle test from 25 °C to 300 °C

2. Supplementary Tables

Table S1 Nominal and final chemical compositions of as-cast samples for the first and third

synthesis cycle					
	Nominal	Final compositions			
Element	composition	1 st synthesis cycle	3 rd synthesis cycle		
	(at%)	(at%)			
Si	10.08	9.38	8.83		
В	17.29	17.29^{*}	17.29*		
Zn	3.45	3.49	3.61		
Ca	1.44	1.45	1.64		
Al	1.15	1.15^{*}	1.15^{*}		
Na	3.45	3.17	2.94		
Cs	4.03	3.62	3.39		
Pb	1.72	1.65	1.58		
Br	2.59	2.15	1.75		
Ο	54	56.65	57.82		

*: Compositions of these elements are taken constant as in the nominal glass composition

Synthesis Cycle	Sample	X	У
	480-1 st	0.1196	0.2139
	490-1 st	0.1299	0.7856
1 st synthesis cycle	500-1 st	0.2069	0.7620
	510-1 st	0.2427	0.7371
	520-1 st	0.2598	0.7243
	480-2 nd	0.1339	0.1940
	490-2 nd	0.0860	0.4162
2 nd synthesis cycle	500-2 nd	0.0638	0.5527
	510-2 nd	0.0817	0.7348
	520-2 nd	0.0974	0.7337
	480-3 rd	0.1298	0.1890
	490-3 rd	0.1084	0.3226
3 rd synthesis cycle	500-3 rd	0.0679	0.4884
	510-3 rd	0.0589	0.5957
	520-3 rd	0.0888	0.7369

 Table S2 CIE color coordinates of PQD GNCs

Table S3 Observed FTIR	band positions for 510-3 rd sample
------------------------	---

Wavenumber (cm ⁻¹)	Band assignments
680	bending vibrations of bridging oxygen in BO ₃ units ^{1,2}
018	B-O stretching vibrations in BO ₄ units and also
918	stretching frequency of Si–O–B ^{1,3}
1023	B–O stretching vibrations in BO ₄ units ³
1260	B–O stretching vibrations in BO ₃ units ⁴
1352	B–O stretching vibrations in BO ₃ units ⁴
3200-3600 (broad)	Molecular water ^{1,5,6}

REFERENCES

- 1. J. Zhong, X. Ma, H. Lu, X. Wang, S. Zhang and W. Xiang, J. Alloys Compd., 2014, 607, 177-182.
- 2. P. Muralidharan, M. Venkateswarlu and N. Satyanarayana, *Mater. Chem. Phys.*, 2004, **88**, 138-144.
- 3. A. E. Ersundu, M. Çelikbilek and S. Aydin, J. Non-Cryst. Solids, 2012, 358, 641-647.
- 4. T. G. V. M. Rao, A. Rupesh Kumar, K. Neeraja, N. Veeraiah and M. Rami Reddy, J. Alloys Compd., 2013, 557, 209-217.
- 5. C. Gautam, A. K. Yadav and A. K. Singh, *ISRN Ceramics*, 2012, **2012**, 428497.
- 6. A. Bobrowski, B. Hutera, A. Kmita, D. Drożyński and M. J. M. Starowicz, 2012, **51**, 477-480.