Electronic Supplementary Information

Y₂O₃-YAG:Ce composite phosphor ceramic with enhanced light extraction efficiency for solid state laser lighting

Hailiang Fang,^{ab} Beiying Zhou,^{*ac} Jiancheng Wang,^b Xiaobo Hu,^b Zesheng Pan,^b Shengjie Fan,^b Ping Huang,^b Shijia Gu,^{ac} Lianjun Wang,^{*ab} Wan Jiang,^{*ac}

^a Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai, P. R. China
^b State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials
Science and Engineering, Donghua University, Shanghai, P. R. China
^c Institute of Functional Materials, Donghua University, Shanghai, P. R. China

Figure S1 XRD pattern of Y₂O₃-YAG:Ce composite phosphor ceramics with different YAG:Ce phosphor contents.

Figure S2 The surface SEM image of Y_2O_3 -YAG:Ce composite phosphor ceramic after thermal etching and the result of the grain size distribution shows in inset.

Figure S3 The backscattered SEM images of Y₂O₃-YAG:Ce composite phosphor ceramics with different YAG:Ce phosphor contents.

Figure S4 TEM image (a) of the composite phosphor ceramic with 6 wt% YAG:Ce phosphor and the EDS element mapping images from (b) to (d). The HAADF curves (e) of different element according to the green straight line from the phosphor particles to the polycrystalline Y_2O_3 matrix.

Figure S5 X-ray photoelectron spectroscopy (XPS) spectra of Ce $3d_{3/2,5/2}$ in (a) YAG:Ce phosphor and (b) Y₂O₃-YAG:Ce composite phosphor ceramic and corresponding fitting curves.

Figure S6 The YAG:Ce fluorescence decay curves of YAG:Ce phosphor and Y_2O_3 -YAG:Ce phosphor ceramic and corresponding fitting curves, the fitting curve 1 is for YAG:Ce phosphor, fitting curve 2 is for Y_2O_3 -YAG:Ce phosphor ceramic. The excitation wavelength and emission wavelength were 460 nm and 540 nm, respectively.

Figure S7 Luminescence spectra and corresponding color rendering index (CRI), correlated color temperature (CCT) and physical images of Y_2O_3 -YAG:Ce phosphor ceramic with 8 wt% concentration under 450 nm blue lasers with different power densities.

	Ce: YAG	Peak/eV	Area/a.u	Relative perc/%	Phos Cera	Peak/eV	Area/a.u.	Relative perc/%
	3d _{3/2}	901.55	1930.21	12 510/	3d _{3/2}	900.80	792.80	15 010/
	3d _{5/2}	883.49	1252.54	45.5170	3d _{5/2}	882.81	1100.76	43.0170
Ce^{4+}	3d _{3/2}	906.61	1386.52		3d _{3/2}	906.23	1068.92	
3d	3d _{5/2}	889.36	1535.88		3d _{5/2}	888.36	750.65	
	3d _{3/2}	916.57	409.54		3d _{3/2}	916.50	1200.97	
	3d _{5/2}	897.16	696.69		3d _{5/2}	897.09	845.47	
	3d _{3/2}	899.22	1965.08		3d _{3/2}	899.21	1129.65	
Ce^{3+}	3d _{5/2}	881.51	1657.74	56 400/	3d _{5/2}	880.62	987.20	54 020/
3d	3d _{3/2}	904.32	2708.86	30.49%	3d _{3/2}	903.91	2218.43	34.92%
	3d _{5/2}	885.85	3031.41		3d _{5/2}	885.54	2336.19	

Table S1. The core excitation binding energy (eV) of Ce 3d and the corresponding atomic relative area are collected from Ce⁴⁺ and Ce³⁺ in YAG:Ce phosphor and Y₂O₃-YAG:Ce phosphor ceramic with 20 wt% phosphor contents.

Table S2. The luminous flux (LF), LE, CCT, CRI and the CIE color coordinates (x, y) of Y_2O_3 -YAG:Ce composite phosphor ceramic with different YAG:Ce phosphor contents under 450 nm blue laser light radiation with 4.24 W mm⁻² powder density.

Sample	ССТ	CRI	CIE color coordinates (x , y)	LF (lm)	LE (lm W ⁻¹)
2 wt% YAG: Ce	8314	73	(0.2987, 0.2839)	489.47	147.02
4 wt% YAG: Ce	5335	66	(0.3364, 0.3453)	538.22	161.66
6 wt% YAG: Ce	5564	66	(0.331, 0.3286)	549.53	165.06
8 wt% YAG: Ce	4638	62	(0.357, 0.3664)	593.28	178.20
10 wt% YAG: Ce	4884	63	(0.3477, 0.3474)	545.29	163.79

Table S3. Saturation power densities, LF and LE for the reported LDs adopting phosphor in glass,

Composition	Saturation Power Density (W/mm ²)	LF (lm)	LE (lm/W)	Reference				
YAG:Ce phosphor in silica glass (PiSG)	3.46			1				
Single-phase YAG:Ce	11.94	700	123.3	2				
transparent ceramic	—		170	3				
$\begin{array}{c} Y_{3\text{-}x}Mg_{x}Al_{5\text{-}2x}Si_{x}O_{12}{:}0.5\%\text{Ce}\\ (x{=}0.005)\text{ transparent}\\ \text{ ceramic} \end{array}$	~4.0	~650	223	4				
	20.1	1367	135.3	2				
Al ₂ O ₃ -YAG:Ce CPCs		1200	165	5				
	32		305	6				
BaAl ₂ O ₄ -YAG:Ce CPCs	_	479	37	7				
MgO-YAG:Ce CPCs	32.2	3979	292	8				
AlN-YAG:Ce CPCs	_	639	266	9				
YAG-YAG:Ce CPCs	9.60		142	10				

1 000

Y₂O₃-YAG:Ce CPCs

1 D. Zhang, W. Xiao, C. Liu, et al. Highly efficient phosphor-glass composites by pressureless sintering, Nat Commun, 2020, 11 (1), 2805.

6.14

805

This work

178.4

- 2 J. Wang, X. Tang, P. Zheng, et al. Thermally self-managing YAG:Ce-Al₂O₃ color converters enabling highbrightness laser-driven solid state lighting in a transmissive configuration, J Mater Chem C, 2019, 7 (13), 3901-3908.
- 3 J. Kang, L. Zhang, Y. Li, et al. Luminescence declining behaviors in YAG:Ce transparent ceramics for high power laser lighting, J Mater Chem C, 2019, 7 (45), 14357.
- 4 Q. Yao, P. Hu, P. Sun, et al. YAG:Ce(3+) transparent ceramic phosphors brighten the next-generation laser-driven lighting. Adv Mater, 2020, 32 (19), 1907888.
- 5 C. Cozzan, G. Lheureux, N. O'Dea, et al. Stable, Heat-Conducting Phosphor Composites for High-Power Laser Lighting, ACS Appl Mater Interfaces, 2018, 10 (6), 5673-5681.
- 6 Z. Liu, S. Li, Y. Huang, et al. The effect of the porosity on the Al₂O₃-YAG:Ce phosphor ceramic: Microstructure, luminescent efficiency, and luminous stability in laser-driven lighting, J Alloys Compd, 2019, 785, 125-130.
- 7 Y. Tian, J. Chen, X. Yi, et al. A new BaAl₂O₄-YAG: Ce composite ceramic phosphor for white LEDs and LDs lighting, J Eur Ceram Soc, 2021, 41, 4343-4348.
- 8 H. Zhao, H. Yu, J. Xu, et al. Novel high-thermal-conductivity composite ceramic phosphors for high-brightness laser-driven lighting, J Mater Chem C, 2021, 9 (32), 10487-10496.
- 9 K. Fujioka, K. Yagasaki, T. Sawada, et al. AlN-Ce-doped yttrium aluminum garnet composite ceramic phosphor

for high-power laser lighting. Opt Mater, 2021, 121, 111507.

10 Q. Zhu, S. Li, Q. Yuan, et al. Transparent YAG:Ce ceramic with designed low light scattering for high-power blue LED and LD applications. *J Eur Ceram Soc*, **2021**, *41*(1), 735-740.