Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

Supporting Information

for

Ti₃ C_2T_x Quantum Dots/ Polyvinyl alcohol Films as **Enhanced Long-term Stable Saturable Absorber Device for Ultrafast Photonics**

Jianfeng Liu¹, Shanshan Chen^{1,2*}, Lili Tao^{1,2}, Yu Zhao^{1,2}, Junshan He¹, Le Huang^{1,2},

Yibin Yang^{1,2}

¹*School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China*

²*Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou, 510006, China*

**Corresponding author: chensunny@gdut.edu.cn*

Preparation of $Ti_3C_2T_x$ QDs and its PVA SA Device

Firstly, the mixture of 3.2 g lithium fluoride (99.99 %, Macklin) and 40 mL 9 M hydrochloric acid (36 wt%, Guangzhou) was served as the etchant to obtain $Ti_3C_2T_x$ NSs. Magnetic stirrer was exploited to ensure the mixture complete dissolution in a 100 ml polytetrafluoroethylene beaker. Then, 2.0 g $Ti₃AIC₂$ (400 mesh, 11 Technology Co., Ltd., China) was slowly added to the solvent. The etching procedure was stirred at 350 rpm for 24 h at 35℃. Next, 1 M HCl was used to remove excess LiF and coproduct AlF_3 by centrifugation (H1850, Cence, China) for 2-3 times after reaction. Subsequent wash with deionized water for several times to make the pH of the supernatant reach 6, and then the multilayer $Ti_3C_2T_x$ was obtained. Better delamination was carried by an ice bath ultrasonication (KQ-500VDE, ShuMei) for 2 hours until the sediment swelling. The mono or few-layer $Ti_3C_2T_x$ in dark green supernatant was collected by repeatedly centrifuging at 3500 rpm for 1 h. the dehydration process was conducted in a freezing dryer (LC-12N-50A, LiChen) to keep the mono or few-layer $Ti_3C_2T_x$ from oxidization. A portion of the fully dried mono or few-layer $Ti_3C_2T_x$ was used for characterization, and the remaining portion was used to prepare quantum dots by probe sonication (Scientz-Ⅱ, SCIENTZ, Ningbo Scientz Biotechnology Co., Ltd.) in ethanol (99.7%, Sun, Tianjin Zhiyuan Reagent Co., Ltd) for 12 hours. Finally, $Ti_3C_2T_x$ QDs was collected by centrifugation for twice at 10000 rpm for 1 h and distilled to 10 ml.

Figure S1 Schematic diagram of Ti₃C₂T_x QDs/PVA SA device.

Figure S2 (a) XRD patterns of Ti₃AlC₂ MAX, Ti₃C₂T_x NSs. (b) XRD pattern of Ti₃C₂Tx NSs.

Figure S3 Component peak-fitting of XPS spectra for Al

Figure S4 Schematic diagram of SPM test method.

Figure S5 (a) SPM image of $Ti_3C_2T_x$ NSs. (b) Diameter histogram of $Ti_3C_2T_x$ QDs.

Ultrafast Laser Application

The ring cavity was pumped by a 980 nm single-mode diode laser (Connet, VLSS-980) with a 980/1550 nm wavelength division multiplexer (WDM). A 1.2 m $Er³⁺$ doped fiber (EDF, LIEKKI, Er30) was used as the gain medium. The polarization independent isolator (PI-ISO) was employed to ensure the unidirectional operation of the laser in the ring cavity. Cavity polarization state and intracavity birefringence were adjusted by a polarization controller (PC). The PVA SA based on $Ti_3C_2T_x$ QDs was incorporated between WDM and PC through FC (Ferrule Contactor)/APC (Angled Physical Contact) connectors. 10% of the laser separated by the OC (9:1) was used for detection, and the remaining 90% returned ring cavity to continue resonance. In addition, a certain length of single-mode fiber (SMF) was needed to the ring cavity for signal output. The output laser characteristics were monitored by an oscilloscope (Tektronix, MDO4104B) equipped with an ultrafast photodetector (EOT, ET-5000). The output laser spectrum was detected by an optical analyzer (Avesta.ASP-IR-2.6). The width of mode-locked pulse was detected by an autocorrelator (Femtochrome, FR-103XL).

The group velocity dispersion (GVD) of EDF and SMF were 21.7 ps²/km and -27.6 ps²/km at 1550 nm, respectively. In the mode-locked case, the cavity length was 22.6 m. Therefore, when the dispersion of PVA SA or other influence factors was not considered, the net dispersion could be calculated to be -0.565 ps² for mode-locked laser. It means the EDFL operated in an anomalous region.

Figure S6 Output power varies with pump power. (Q-switched)

Figure S7 Output power varies with pump power. (Mode-locked)

Figure S8 Oscilloscope screenshots of the mode-locking operation based on $Ti_3C_2T_x$ QDs at different times.

Figure S9 (a) Oscilloscope screenshots (various days). (b) Pulse sequences. (c) Mode-locking optical spectrum. (d) Autocorrelation trace with a sech² fitting. (e) The RF spectrum at the fundamental frequency; inset: the broadband RF spectrum withing 1 GHz with a RBW of 1 MHz. (f) Output power varies with pump power.

Region	BE (eV)	FWHM (eV)	Fraction $(\%)$	Assigned to
	454.7(460.6)	1.2(2.0)	45	$C-Ti-C$
	455.7(461.5)	1.5(2.0)	27	$C-Ti-O$
Ti 2 $p_{3/2}$ (2 $p_{1/2}$)	456.9(462.8)	2.0(1.3)	21	$C-Ti-F/Cl$
	458.6(464.2)	1.5(1.6)	7	TiO ₂
	281.7	0.8	46	$C-Ti-C$
C _{1s}	282.6	0.7	6	$C-Ti-T_x$
	284.8	3.2	48	$C-C$
	529.8	1.3	30	TiO ₂
	531.0	1.5	40	$C-Ti-Ox$
O _{1s}	532.2	1.5	19	$C-Ti-(OH)_x$
	533.4	1.5	9	H_2O
	535.0	1.5	\overline{c}	$\text{Al}(\text{OF})_{\text{x}}$
	684.3	1.6	47	$C-Ti-F$
F1s	686.0	2.5	53	Metal fluoride (AIF_x)
Al $2p$	75.6	2.73	100	AlF_x or AlCl_x
Cl 2p	199.1(200.8)	1.2(1.2)	78	C-Ti-Cl
	200.1(201.8)	1.5(1.5)	22	Metal chloride $(AlClx)$

Table S1 XPS peak fitting results for as-prepared Ti3C2Tx.

Table S2 XPS peak fitting results for Ti3AlC2(MAX).

Region	BE (eV)	FWHM (eV)	Fraction $(\%)$	Assigned to
	453.9(460.0)	1.2(1.3)	25	$C-Ti-C$
Ti 2 $p_{3/2}$ (2 $p_{1/2}$)	455.4(461.3)	2.5(3.0)	33	$C-Ti-Al$
	458.2(463.9)	1.5(1.9)	42	TiO ₂
	281.0	0.8	7	$C-Ti$
	284.8	1.5	74	$C-C$
C _{1s}	286.4	1.5	12	$C-O$
	288.8	1.3	7	$C=O$
O _{1s}	529.7	1.5	39	TiO ₂
	531.6	2.4	53	$C-Ti-O_x$
	533.6	1.5	8	H_2O
Al $2p_{3/2}$ $(2p_{1/2})$	71.3(71.7)	0.7(0.7)	19	$Al-Ti$
	73.8	1.7	81	Al_2O_3

Time	Central wavelength / Bandwidth (nm)	Repetition Rate (MHz)	Pulse duration (fs)	SNR (dBm)
$2022 - 10 - 8$	1567.64/5.16	19.20	765	58.5
2022-10-9	1568.36/5.91	19.21	654	59.8
$2022 - 10 - 10$	1568.71/4.36	19.21	758	55.5
2022-10-11	1566.21/4.56	19.21	701	52.3
2022-10-12	1568.71/6.12	19.21	668	55.8

Table S3 Summary of performance for five consecutive days.