Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

The ultra-high thermoelectric power factor in facile and scalable single-step thermal evaporation fabricated composite SnSe/Bi thin film

Manoj Kumar^{1,2,3}, Sanju Rani^{1,2}, Rahul Parmar⁴, M. Amati⁴, L. Gregoratti⁴, Abhishek Ghosh⁵, Saurabh Pathak⁶, Anil Kumar⁷, Xu Wang^{3*}, Vidya Nand Singh^{1,2*}
¹Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh- 201002, India
²Indian Reference Materials (BND) Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012, India
³School of Engineering, RMIT University, VIC 3000 Australia
⁴Elettra-Sincrotrone, Strada Statale 14, AREA Science Park 34149, Basovizza, Trieste, Italy
⁵Thin Film Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
⁶National Creative Research Initiative Center for Spin Dynamics and SW Devices, Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, South Korea
⁷Department of Physics, M.N.S. Govt. College, Bhiwani, Haryana -127021, India

Corresponding authors: xu.wang@rmit.edu.au (X Wang), singhvn@nplindia.org (VNS),

Supplementary Information

Figure S1. Thickness measurement of the SnSe/Bi composite samples

Figure S2- Raman spectra of the samples taken at 4 random points.

Figure S3 Top to bottom, EDX spectrum of the samples 20 wt% Bi, 25 wt% Bi and 30 wt% Bi, respectively at 3 different places on sample, respectively.

Figure S4- EDX spectra of the samples showing concentration of Sn, Se decreases and of Bi increases with increasing wt% of Bi.

Table S1 – Comparison of the SnSe thermoelectric materials

Sr.	Material/subst	Growth	Temperatur	Power factor	ZT	Refer
No.	-rate	method	e (K)	$(\mu W cm^{-1} K^{-2})$		ence
1	SnSe/fused	Sputtering	675	2.4		[1]
	silica					
2	SnSe/sapphire	PLD	800	1.96	0.45	[2]
3	SnSe/semi-	MPCVD	600	3.98	0.335	[3]
	insulating					
	silicon (111)					
4	Mo-doped	Magnetron	576	0.44		
	SnSe/Schott-	sputtering				
	D263T glass					
5	Bi-doped	PLD	573	0.3	0.034*	[4]
	SnSe/STO(10					
	0)					

6	Bi-doped	CVD	700	0.6	0.08*	[5]
	SnSe/intrinsic					
	Si (100)					
7	SnSe/Si	PLD	478	18.5		[6]
	substrate					
	having 300					
	nm SiO ₂					
8	SnSe	Solution	550	4.27		[7]
	ink/glass	process				
9	SnSe/SiO2/Si	PLD	573	0.15		[8]
10	SnSe/MgO	PLD	600	4.72	1.2*	[9]
11.	SnSe single	vertical	923		2.62	[10]
	crystal	Bridgman				
		crystal		~10 @ 850		
		growth		K		
12.	SnSe	Solid state	783	12.06 @ 473	3.1	[11]
	polycrystal	reaction		K prep. To		
13	Bi mixed	Thermal	580	~ 8		This
	SnSe/SiO ₂	evaporation				work
	(300 nm	method				
	thick)					

Microwave plasma chemical vapor deposition (MPCVD)

Pulsed laser deposition PLD

SrTiO3 (STO)

Chemical vapor deposition CVD

*here ZT is calculated conservatively using literature data on thermal conductivity

References-

- L. Song, J. Zhang, and B. B. Iversen, "Enhanced thermoelectric properties of SnSe thin films grown by single-target magnetron sputtering," *J. Mater. Chem. A*, vol. 7, no. 30, pp. 17981–17986, 2019, doi: 10.1039/c9ta03252e.
- [2] S. Saini, P. Mele, and A. Tiwari, "Influence of the planar orientation of the substrate on thermoelectric response of SnSe thin films," *J. Phys. Chem. Solids*, vol. 129, pp. 347–353, 2019, doi: 10.1016/j.jpcs.2019.01.010.
- [3] Y. Feng, X. Zhang, L. Lei, Y. Nie, and G. Xiang, "Rapid synthesis of thermoelectric SnSe

thin films by MPCVD," *RSC Adv.*, vol. 10, no. 20, pp. 11990–11993, 2020, doi: 10.1039/d0ra01203c.

- [4] T. Horide, K. Nakamura, Y. Hirayama, K. Morishita, M. Ishimaru, and and K. Matsumoto, "Thermoelectric Property of n-Type Bismuth-Doped SnSe Film Defect," ACS Appl. Energy Mater., vol. 4, pp. 9563–9571, 2021.
- [5] J. Pang, X. Zhang, L. Shen, J. Xu, Y. Nie, and G. Xiang, "Synthesis and thermoelectric properties of Bi-doped SnSe thin films*," *Chinese Phys. B*, vol. 30, no. 11, p. 116302, 2021, doi: 10.1088/1674-1056/ac11da.
- [6] C. H. Suen *et al.*, "Enhanced thermoelectric properties of SnSe thin films grown by pulsed laser glancing-angle deposition," *J. Mater.*, vol. 3, no. 4, pp. 293–298, 2017, doi: 10.1016/j.jmat.2017.05.001.
- [7] S. H. Heo *et al.*, "Composition change-driven texturing and doping in solution-processed SnSe thermoelectric thin films," *Nat. Commun.*, vol. 10, no. 1, 2019, doi: 10.1038/s41467-019-08883-x.
- [8] X. Gong *et al.*, "Highly (1 0 0)-orientated SnSe thin films deposited by pulsed-laser deposition," *Appl. Surf. Sci.*, vol. 535, no. February 2020, p. 147694, 2021, doi: 10.1016/j.apsusc.2020.147694.
- [9] S. Hou, Z. Li, Y. Xue, X. Ning, J. Wang, and S. Wang, "Surprisingly high in-plane thermoelectric performance in a-axis-oriented epitaxial SnSe thin films," *Mater. Today Phys.*, vol. 18, p. 100399, 2021, doi: 10.1016/j.mtphys.2021.100399.
- [10] L. D. Zhao *et al.*, "Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals," *Nature*, vol. 508, no. 7496, pp. 373–377, 2014, doi: 10.1038/nature13184.
- [11] C. Zhou *et al.*, "Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal," *Nat. Mater.*, 2021, doi: 10.1038/s41563-021-01064-6.