Supporting Information

Growth modulation of nonlayered 2D-MnTe and MnTe/WS₂ heterojunction for high-performance photodetector

Taikun Wang^{a,b}, Fapeng Sun^{a,b,c}, Wenting Hong^{a,b}, Chuanyong Jian^{a,b}, Qinkun Ju^{a,b,c},

Xu He^{a,b*}, Qian Cai^{a,b}, Wei Liu^{a,b*}

^aCAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China

^bFujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China

^cUniversity of Chinese Academy of Sciences, Beijing, 100049, China

E-mail:hexu@fjirsm.ac.cn, liuw@fjirsm.ac.cn

Figure S1. Schematic diagram of the process to transfer MnTe nanosheets onto a copper mesh.

Figure S2. Low-magnification transmission electron microscopy images (a) and high-angle annular dark-field (HAADF) image (b) of MnTe nanosheet.

Figure S3. The average thickness of MnTe nanosheets grown at different gas flows.

Figure S4. Morphological evolution of MnTe nanosheets as single-domain net growth rate increases.

Figure S5. The optical microscopy image (a) and the AFM image (b) of MnTe-based FET device.

Figure S6. $I_{ds}\mbox{-}V_{ds}$ output characteristics of MnTe-based FET.

Figure S7. (a)PL spectra of MnTe nanosheets with different thicknesses. (b) PL spectra of a few layers of WS₂ nanosheets and MnTe/WS₂ heterostructure.

Figure S8. The optical microscopy image (a) and the AFM image (b) of $MnTe-WS_2$ heterojunction photodetector device.

Figure S9. Schematic diagram of the process to fabricate the MnTe/WS₂ photodetector.

Figure S10. Band alignment of MnTe/WS2 heterojunction.

Figure S11. The mechanism diagram of $MnTe-WS_2$ heterojunction photodetector.

Figure S12. The fitted curve of power density vs. photocurrent.

Materials	Method	Wavelengt	Photoresponsivit	Detectivit	Referenc
		h (nm)	y (A W ⁻¹)	y (Jones)	e
MnTe/WS ₂	CVD-restacking	637	0.271	1.23×10 ¹⁰	This
					work
WS ₂ /MoS ₂	CVD	532	0.00436	4.36×10 ¹³	1
WSe ₂ /SnS ₂	CVD	520	0.108	4.71×10 ¹⁰	2
GaSe/MoS ₂	CVD	300	0.065	-	3
GaSe/MoSe ₂	CVD	white light	0.03	-	4
SnS ₂ /MoS ₂	CVD	638	1.36	-	5
GaSe/Gasb	MBE	637	0.1	2.2×10 ¹²	6
ReS ₂ /ReSe ₂	Exfoliated-restacking	550	0.021	-	7
MoTe ₂ /MoS ₂	Exfoliated-restacking	473	0.06	1.60×10 ¹⁰	8
BP/InSe	Exfoliated-restacking	455	0.017	-	9

Table S1. Comparison of the photodetector performance with other 2D heterostructures.

References

- 1 W. Wu, Q. Zhang, X. Zhou, L. Li, J. Su, F. Wang and T. Zhai, *Nano Energy*, 2018, **51**, 45-53.
- T. Yang, B. Zheng, Z. Wang, T. Xu, C. Pan, J. Zou, X. Zhang, Z. Qi, H. Liu, Y. Feng, W. Hu,
 F. Miao, L. Sun, X. Duan and A. Pan, *Nat Commun*, 2017, 8, 1906.
- 3 N. Zhou, R. Wang, X. Zhou, H. Song, X. Xiong, Y. Ding, J. Lu, L. Gan and T. Zhai, *Small*, 2018, 14.
- 4 X. F. Li, M. W. Lin, J. H. Lin, B. Huang, A. A. Puretzky, C. Ma, K. Wang, W. Zhou, S. T. Pantelides, M. F. Chi, I. Kravchenko, J. Fowlkes, C. M. Rouleau, D. B. Geohegan and K. Xiao, *Science Advances*, 2016, 2, e1501882.
- 5 B. Li, L. Huang, M. Zhong, Y. Li, Y. Wang, J. Li and Z. Wei, *Advanced Electronic Materials*, 2016, **2**.
- P. Wang, S. Liu, W. Luo, H. Fang, F. Gong, N. Guo, Z. G. Chen, J. Zou, Y. Huang, X. Zhou, J. Wang, X. Chen, W. Lu, F. Xiu and W. Hu, *Adv Mater*, 2017, 29.
- 7 A.-J. Cho, S. D. Namgung, H. Kim and J.-Y. Kwon, APL Materials, 2017, 5.
- 8 F. Wang, L. Yin, Z. X. Wang, K. Xu, F. M. Wang, T. A. Shifa, Y. Huang, C. Jiang and J. He, *Advanced Functional Materials*, 2016, **26**, 5499-5506.
- 9 S. Zhao, J. Wu, K. Jin, H. Ding, T. Li, C. Wu, N. Pan and X. Wang, *Advanced Functional Materials*, 2018, **28**.