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1. Instruments and methods

1.1 General Information. Bruker Avance II 400 was used to record 1H and NMR 

data based on tetramethylsilane (TMS) as internal standard and chloroform-d (CDCl3) 

as the solvent. The high-resolution mass (HRMS) spectra were measured using LTQ 

Orbitrap XL for HRMS-ESI. The electrochemical workstation (BAS100B, USA) and 

the traditional three-electrode configuration, including a glass-carbon electrode, a Pt-

wire, and a saturated calomel electrode (SCE) were used to measure the 

electrochemical performance of cyclic voltammetry (CV) at a scan rate of 100 mV s-1. 

The samples in dichloromethane (DCM, anodic) or N, N-dimethylformamide (DMF, 

cathodic) solutions containing 0.1 M [Bu4N]PF6 as the electrolyte were deoxygenated 

with nitrogen for 10 mins before scanning. The UV-vis absorption spectra were 

measured on Perkin-Elmer Lambda 650 spectrophotometer. The fluorescence spectra 

at room temperature and the temperature-dependent transient PL spectra were 

obtained from the Edinburgh FLS1000 fluorescence spectrophotometer while the 

phosphorescence spectra were recorded using a Hitachi F-7000 fluorescence 

spectrometer at 77 K in 2-MeTHF. Photoluminescence quantum yields (PLQYs) were 

measured on a HAMAMATSU absolute PL quantum yield spectrometer C11347. 

The density functional theory (DFT) calculation at the B3LYP-D3BJ/def2-SVP 

level was used to optimize the ground state geometries of the investigated molecules. 

Time-dependent density functional theory (TD-DFT) calculations were performed at 

PBE0/def2-SVP using the optimized ground state geometries. The hole/particle were 
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deduced from the natural transition orbitals (NTOs) analysis based on TD-DFT 

results.1 The spin-orbit coupling matrix elements (SOCME) were calculated by 

ORCA program. Independent gradient model based on Hirshfeld partition of 

molecular density (IGMH) method is a visual analysis of chemical systems 

interactions, wherein δg = δginter +δgintra, δg represents interactions between all atoms 

in the current system, δginter and δgintra represent interactions of interfragment and 

intrafragment, respectively. Sign (λ2)ρ were calculated and visualized using Multiwfn 

and VMD.2, 3

1.2 OLED fabrication and measurements.  The pre-cleaned ITO glass substrates 

with the sheet resistance of 15 Ω m-2 were treated by UV-ozone for 30 minutes. A 40 

nm thick PEDOT: PSS film was first spin-coated on the ITO glass substrate and 

baked in the air at 120 ℃ for 30 minutes. The substrate was then transferred to a 

vacuum chamber where the organic layers were deposited at a basic pressure of less 

than 10-6 Torr (1 Torr =133.32 Pa). Finally, a 1 nm thin layer of LiF film was 

deposited on the organic layers, and then 200 nm Al film was deposited as the cathode. 

The overlap part of the two electrodes was the emission area of each pixel, which was 

9 mm2. A PR705 photometer and source-measure-unit Keithley 236 were used to 

measure the EL spectra, CIE coordinates, and J-V-B curves of the devices under 

ambient conditions. The forward-viewing external quantum efficiency was calculated 

with an assumption of a Lambertian emission profile by using the current efficiency, 

EL spectra, and human photopic sensitivity.

1.3 Calculation of the rate constants of the different kinetic processes 
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The following formula were used for calculations:

                                                   (E1)Φ = Φ𝑃𝐹 + Φ𝐷𝐹

                                                     (E2)𝑘𝑟 = Φ𝑃𝐹 𝜏𝑃𝐹

                                                 (E3)Φ = 𝑘𝑟 (𝑘𝑟 + 𝑘𝑛𝑟)

                                          (E4)Φ𝑃𝐹 = 𝑘𝑟 (𝑘𝑟 + 𝑘𝑖𝑠𝑐 + 𝑘𝑛𝑟)

                                            (E5)𝑘𝑟𝑖𝑠𝑐 = 𝑘𝑝𝑘𝑑Φ𝐷𝐹 𝑘𝑖𝑠𝑐Φ𝑃𝐹

                                                          (E6)
𝑘𝑝 =

1
𝜏𝑃𝐹

                                                          (E7)
𝑘𝑑 =

1
𝜏𝐷𝐹

kr, knr, kisc, and krisc represent the rate constants of radiative, non-radiative, intersystem 

crossing (ISC) and RISC, respectively. Φ, ΦPF, and ΦDF represent total PLQY, PLQY 

of the prompt component and delayed component, respectively. τPF and τDF are 

lifetimes of the prompt and delayed components, respectively.4 Φ, PF, and DF were 

measured experimentally.4, 5 All data are shown in Table 1.

2. Compound synthesis
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Scheme S1 Structures and synthetic routes of p-tCz-BP, o-tCz-BP and D-tCz-D-BP.

The key intermediates of 1, 2 and 3 were synthesized according to the literature 

methods.6-8

General procedure for synthesis of (4-(3,6-di-tert-butyl-9H-carbazol-9-

yl)phenyl)(p-tolyl)methanone (p-tCz-BP), (2-(3,6-di-tert-butyl-9H-carbazol-9-

yl)phenyl)(p-tolyl)methanone (o-tCz-BP) and (4,6-bis(3,6-di-tert-butyl-9H-carbazol-

9-yl)-1,3-phenylene)bis(p-tolylmethanone) (D-tCz-D-BP). Compound 1 (2.3 g, 5.3 

mmol) was added to dry THF in a three-necked flask under nitrogen. The solution 

was cooled to -78 ℃, and 2.5 mL of n-BuLi (2.5 M) was added dropwise using a 

syringe. The mixture was stirred for 1 h at -78 ℃ and then 4-methylbenzaldehyde 

(10.6 mmol) was slowly added into the reaction solution. The mixture was stirred for 

1 h at -78 ℃ and then stirred overnight at room temperature. Subsequently, the 

mixture was stirred for 10 minutes under ice-water. Then, 50 mL of ice water was 

added to quench the reaction and perform a hydrolysis reaction. The resulting mixture 

was extracted with dichloromethane three times. The combined organic layers were 
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dried over anhydrous magnesium sulfate. After filtration and solvent evaporation, the 

crude product that without further purification or characterization was dissolved in 40 

mL of dichloromethane in a 100 mL round bottom flask, then pyridinium 

chlorochromate (PCC) (4.7 g, 21.8 mmol) was added. The mixture was stirred for 12 

h. The precipitate was filtered and the filtrate was poured into saturated saltwater and 

extracted with dichloromethane. The organic layer was then collected, dried with 

magnesium sulfate, filtered, and evaporated under reduced pressure. After solvent 

evaporation, the crude product was purified by column chromatography over silica gel 

with a dichloromethane/petroleum ether (1 : 30 v/v) mixture as an eluent. 

p-tCz-BP: white solid, yield 40%. 1H NMR (400 MHz, CDCl3) δ 8.15 (s, 2H), 

8.03 (d, J = 8.2 Hz, 2H), 7.82 (d, J = 7.8 Hz, 2H), 7.71 (d, J = 8.2 Hz, 2H), 7.51 – 

7.46 (m, 4H), 7.35 (d, J = 7.8 Hz, 2H), 2.48 (s, 3H), 1.48 (s, 18H). HRMS-ESI (m/z): 

cal. for C34H35NO 473.2719; Found: 474.2785 [M+H]+. Anal. calcd for C34H35NO: C, 

86.22; H, 7.45; N, 2.96; Found: C, 86.24; H, 7.49; N, 2.98.

o-tCz-BP: white solid, yield 35%. 1H NMR (400 MHz, CDCl3) δ 7.83 (d, J = 7.9 

Hz, 1H), 7.79 (d, J = 1.4 Hz, 2H), 7.77 – 7.73 (m, 1H), 7.62 – 7.58 (m, 2H), 7.39 (s, 

1H), 7.36 (d, J = 2.5 Hz, 1H), 7.14 (s, 1H), 7.12 (s, 1H), 6.86 (d, J = 8.1 Hz, 2H), 6.46 

(d, J = 7.9 Hz, 2H), 2.03 (s, 3H), 1.42 (s, 18H). HRMS-ESI (m/z): cal. for C34H35NO 

473.2719; Found: 474.2790 [M+H]+. Anal. calcd for C34H35NO: C, 86.22; H, 7.45; N, 

2.96; Found: C, 86.24; H, 7.51; N, 2.98.

D-tCz-D-BP: pale-yellow solid, yield 30%. 1H NMR (400 MHz, CDCl3) δ 8.32 

(s, 1H), 7.91 (s, 1H), 7.81 (s, 4H), 7.44 (d, J = 8.6 Hz, 4H), 7.31 (d, J = 8.6 Hz, 4H), 
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7.02 (d, J = 8.0 Hz, 4H), 6.54 (d, J = 7.9 Hz, 4H), 2.08 (s, 6H), 1.43 (s, 36H). HRMS-

ESI (m/z): cal. for C62H64N2O2 868.4968; Found: 891.4855 [M+Na]+. Anal. calcd for 

C62H64N2O2: C, 85.67; H, 7.42; N, 3.22; Found: C, 85.69; H, 7.50; N, 3.20.

3. Supplementary Figures and Tables

Table S1 The corresponding energy levels of p-tCz-BP, o-tCz-BP and D-tCz-D-BP.

Compound
LUMO+1

[eV]
LUMO

[eV]
HOMO

[eV]

HOMO-1
[eV]

HOMO-2
[eV]

HOMO-3
[eV]

p-tCz-BP -0.98 -1.98 -5.54 -5.90 -6.81 -6.88
o-tCz-BP -0.87 -1.93 -5.32 -5.63 -6.62 -6.88

D-tCz-D-BP -1.89 -2.25 -5.41 -5.48 -5.74 -5.74

Table S2 Spin-orbit coupling matrix elements (SOCME) of p-tCz-BP, o-tCz-BP and 

D-tCz-D-BP. 

Compound SOC (cm-1) T1 T2 T3 T4 T5 T6

S1 0.694 0.546 1.040 0.349 0.820 0.132
S2 0.280 0.276 0.553 0.395 0.241 0.045

S3 16.741 12.938 21.283 0.132 10.631 0.268

S4 0.214 0.251 0.226 0.082 0.094 0.195

S5 0.638 0.779 0.122 0.105 0.066 0.030

p-tCz-BP

S6 0.494 0.352 0.610 0.199 0.221 0.022

S1 0.357 8.033 1.030 6.168 0.033 1.814 

o-tCz-BP

S2 1.093 1.083 1.074 2.776 0.099 0.769 
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S3 3.644 23.957 4.796 24.638 0.111 5.872 

S4 1.669 2.602 0.561 0.668 0.031 0.248 

S5 0.457 2.684 0.572 0.491 0.103 0.177 

S6 2.430 0.441 0.277 0.345 0.037 1.845 

S1 0.133 1.305 2.637 0.932 2.678 2.458 
S2 1.269 0.151 0.520 0.660 0.738 2.051 

S3 0.425 0.257 0.574 0.333 0.592 1.341 

S4 0.082 0.293 0.435 0.321 0.574 0.935 

S5 1.012 0.369 2.534 0.896 2.436 1.840 

D-tCz-D-BP

S6 0.334 0.571 3.490 1.980 3.709 5.164 

Table S3 Crystal data and structure refinement for D-tCz-D-BP. 

Identification code D-tCz-D-BP

Empirical formula C62H64N2O2

CCDC No. 2174202

Formula weight 869.15

Temperature/K 200

Space group P1

a (Å) 11.744(6)

b (Å) 12.517(9)

c (Å) 18.534(10)

α (°) 91.23(2)

β (°) 106.013(8)

γ (°) 101.022(9)

Volume(Å3) 2563(3)

Z 2

F(000) 932.0

Data completeness 0.985

Table S4 Experimentally determined physical parameters of p-tCz-BP, o-tCz-BP and 

D-tCz-D-BP.
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Compound
λabs

a

[nm]
λem

a

[nm]
ES/ET

b

[eV]
ΔEST

 c

[eV]

HOMO
/LUMOd

[eV]

Eg
d

[eV]

p-tCz-BP
296, 330, 
347, 363

467 3.10/2.87 0.23 -5.55/-2.79 2.76

o-tCz-BP
296, 330, 
341, 370

485 3.00/2.92 0.08 -5.52/-2.67 2.85

D-tCz-D-BP
296, 330, 
344, 381

450,530 2.86/2.71 0.15 -5.58/-2.89 2.69

a Absorption and PL peak wavelengths in dilute toluene solution at RT. b Measured from the 

highest-energy onset wavelengths of steady state PL spectra (RT) and phosphorescence spectra 

(with ideally 60ms delay time following pulsed excitation) in 8 wt% doped PPF films. c Energy 

splitting between S1 and T1 estimated as ΔEST = ES - ET. d HOMO and LUMO energy levels 

determined from the electrochemical oxidation and reduction potentials.

Table S5 Summary of the key performances of the reported TBCT and TSCT type 

TADF-OLEDs in recent years.

Emitter EL (nm) EQE (%) Ref.

o-tCz-BP 468 11.1 This work
D-tCz-D-BP 490 24.9 This work

SF12oTz 496 22.4 9

SF23oTz 484 19.6 9

SF34oTz 482 14.6 9

1CTF 490 17.5 10

2CTF 503 19.8 10

3CTF 508 22.6 10

oB-2Cz 486 28.1 11

oB-2tCz 498 27.5 11

TP-BP-DMAC 488 20.5 12

TP-BP-PXZ 531 13.8 12

SFO-SPAC 502 23.5 13

SFO-DMAC 532 15.6 13

T-CNDF-T-tCz 484 21.0 14

S-CNDF-S-tCz 466 2.6 14

S-CNDF-D-tCz 466 3.7 14

4Cz-DPS 524 20.7 15

2Cz-DPS 518 28.7 15

Table S6 Summary of the key performances of TADF molecule act as emitter, host 
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and host emitter in OLEDs.

Compound EQE/CIEa EQE/CIEb EQE/CIEc Ref.

D-tCz-D-BP 24.9%
(0.22,0.40)

21.0%
(0.62,0.36)

18.8%
(0.41,0.42)

This 
work

DCB-BP-SFAC 23.5%
(0.199,0.417)

13.6%
(0.658,0.326)

17.8%
(0.333,0.397)

16

SBF-BP-DMAC 24.5%
(0.308,0.570)

26.8%
(0.477,0.518)

21.0%
(0.442,0.493)

17

Tri-o-2PO --
--

22.1%
--

21.1%
(0.38,0.45)

18

o-CzTrz 17.5%
(0.21,0.43)

13.9%
(0.28,0.56)

20.3%
(0.34,0.42)

19

m-CzTrz 19.2%
(0.25,0.44)

20.8%
(0.31,0.62)

19.8%
(0.38,0.50)

19

a Compound served as emitter for doped OLED. b Compound served as host for PhOLED. c 
Compound served as host emitter for single emissive layer WOLED.
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Fig. S1 The NTO calculations and TSDDs (T1) of p-tCz-BP, o-tCz-BP and D-tCz-D-

BP.



14



15

Fig. S2 The excited state energy-levels of corresponding fragment molecules based on 

the optimized ground geometries of p-tCz-BP, o-tCz-BP and D-tCz-D-BP.
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Fig. S3 Cyclic voltammograms of p-tCz-BP, o-tCz-BP and D-tCz-D-BP.
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Fig. S4 Time-resolved PL spectra of (a) p-tCz-BP, (b) o-tCz-BP, and (c) D-tCz-D-BP 

in 8 wt% doped PPF films at different delay time.
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Fig. S5 Decay curve of prompt fluorescence at room temperature for (a) p-tCz-BP, (b) 

o-tCz-BP and (c) D-tCz-D-BP in 8 wt% doped PPF films.

Fig. S6 (a) Device configuration and energy level diagrams of WOLED, (b) Chemical 

structures of Ir2. 
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20220617-HZL-1--- #5-14 RT: 0.04-0.12 AV: 10 SB: 71 0.01-0.04 , 0.38-0.99 NL: 2.17E6
T: FTMS + p ESI Full ms [200.00-1500.00]
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Fig. S7 MS spectrum of p-tCz-BP.
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T: FTMS + p ESI Full ms [200.00-1500.00]
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Fig. S8 MS spectrum of o-tCz-BP.



19

20220613-hzl- #14-25 RT: 0.12-0.22 AV: 12 SB: 2 0.02-0.03 NL: 1.23E5
T: FTMS + p ESI Full ms [200.00-1500.00]
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Fig. S9 MS spectrum of D-tCz-D-BP.
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Fig. S10 1H NMR spectrum of p-tCz-BP.
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Fig. S11 1H NMR spectrum of o-tCz-BP.
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Fig. S12 1H NMR spectrum of D-tCz-D-BP.
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