Supporting Information

A facile strategy for fabricating self-healable, adhesive and highly sensitive flexible ionogel-based sensors

Yingxue Wu,^a Wenxing Jiang,^a Tianyu Zhao,^a Jiadong Wang,^a Xianhong Zhang,^a Dong Chen^{*a} Yuhong Ma,^a and Wantai Yang^{*ab}

^a State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029,

China

^b Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing 100029, China

Corresponding authors: yangwt@mail.buct.edu.cn, chendong@mail.buct.edu.cn

Preparation of MAH-2959. The synthetic route of the polymerizable photoinitiators MAH-2959 is shown in Scheme S1. Irgacure 2959 (5.0 g, 22.3 mmol), MAH (2.3 g, 23.5 mmol) and 4-dimethylaminopyridine (DMAP, 0.01g) as catalyst were dissolved in anhydrous tetrahydrofuran (20 mL), and the reaction system was then stirred at 70 °C for 8h in the dark. The orange viscous product MAH-2959 was obtained after the removal of THF by rotary evaporation.

Scheme S1. The synthetic route of MAH-2959.

Characterization of MAH-2959. As shown in Fig. S1(a), the FTIR spectrum of MAH-2959 exhibited a typical C=O stretching vibration of ester groups at 1730 cm⁻¹. The proton nuclear magnetic resonance (¹H NMR) spectrum in Fig. S1(b) further demonstrated the successful formation of polymerizable photoinitiator MAH-2959.

Fig. S1 (a) FTIR spectra of Irgacure 2959 and MAH-2959, (b) ¹H NMR spectrum of MAH-2959.

Fig. S2 FTIR spectra of PEI/PAA/DES ionogel prepared using (a) Irgacure 2959, (b)

MAH-2959 in different reaction time.

Fig. S3 (a)Tensile stress-strain curves and (b) conductivities of PEI_{3.9}/PAA₉/DES₇₂ ionogels prepared using different kind and content of photoinitiators.

Sample	AA(g)	Mass fraction of AA in ionogel (wt%)	PEI(g)	Mass fraction of PEI in ionogel (wt%)	Mass ratio of PEI/DES $(\times 10^2)$	Mass ratio of PAA/PEI	Mass fraction of DES in ionogel (wt%)
PEI _{3.2} /PAA ₁₁ /DES ₇₂	3.69	26	0.336	2.3	3.2	11	72
PEI3.9/PAA9/DES72	3.63	25	0.403	2.8	3.9	9	72
PEI _{4.9} /PAA ₇ /DES ₇₂	3.53	25	0.504	3.5	4.9	7	72
PEI5.6/PAA6/DES72	3.45	24	0.576	4.0	5.6	6	72
PEI _{4.7} /PAA ₉ /DES ₆₈	4.39	29	0.488	3.2	4.7	9	68
PEI3.3/PAA9/DES75	3.11	23	0.345	2.5	3.3	9	75
PEI2.8/PAA9/DES78	2.63	20	0.292	2.2	2.8	9	78
PEI3.2/PAA11/DES72.4	3.63	25	0.330	2.3	3.2	11	72.4
PEI5.0/PAA7/DES71.4	3.63	25	0.518	3.6	5.0	7	71.4
PEI7.0/PAA5/DES70.4	3.63	25	0.725	4.9	7.0	5	70.4
PEI3.9/PAA11/DES68.2	4.43	29	0.403	2.6	3.9	11	68.2
PEI3.9/PAA7/DES76.3	2.82	21	0.403	3.0	3.9	7	76.3
PEI3.9/PAA5/DES81.1	2.02	16	0.403	3.1	3.9	5	81.1

Table S1. Compositions of PEIx/PAAy/DESz ionogels (0.28 wt%MAH-2959 relative to AA monomer, CCl-U:10.38g).

Fig. S4 Conductivities of PEI_{3.2}/PAA₁₁/DES₇₂, PEI_{3.9}/PAA₉/DES₇₂, PEI_{4.9}/PAA₇/DES₇₂

and PEI_{5.6}/PAA₆/DES₇₂.

Fig. S5 Tensile stress-strain curves of PEI_{3.9}/PAA₁₁/DES_{68.2}, PEI_{3.9}/PAA₉/DES₇₂, PEI_{3.9}/PAA₇/DES_{76.3} and PEI_{3.9}/PAA₅/DES_{81.1}.

Fig. S6 (a) Tensile stress-strain curves and (b) conductivities of PEI_{3.2}/PAA₁₁/DES_{72.4},

PEI_{3.9}/PAA₉/DES₇₂, PEI_{5.0}/PAA₇/DES_{71.4} and PEI_{7.0}/PAA₅/DES_{70.4}.

Fig. S7 The possible adhesive mechanisms between PEI/PAA/DES ionogels and various adherends.

Fig. S8 The curves of adhesion strength vs displacement for PEI_{3.9}/PAA₉/DES₇₂ to (a)

wood, (b) glass and (c) PVC during repeated adhesion progress.

Fig. S9 Representative curves of adhesion strength vs displacement for $PEI_x/PAA_y/DES_{72}$ to (a) wood, (b) glass and (c) PVC with different ratio of PAA/PEI, Representative curves of adhesion strength vs displacement for $PEI_x/PAA_9/DES_z$ to (d) wood, (e) glass and (f) PVC with different polymer content.

Fig. S10 Representative curves of adhesion strength vs displacement for

PEI3.9/PAA9/DES72 to (a) wood, (b) glass and (c) PVC at different temperature.

Fig. S11 Relative resistance changes of $PEI_x/PAA_y/DES_{72}$ ionogels with different ratio

of PAA/PEI as a function of tensile strain.

Fig. S12 Resistance changes of the PEI3.9/PAA9/DES72 ionogel in the instantaneous

loading-unloading process.

Fig. S13 Hysteresis curve of the PEI_{3.9}/PAA₉/DES₇₂ ionogel strain sensor at 100% strain.

Fig. S14 Real-time monitoring of the relative resistance changes of (a-b) PEI_{2.8}/PAA₉/DES₇₈ ionogel, (c-d) PEI_{3.3}/PAA₉/DES₇₅ ionogel, and (e-f) PEI_{4.7}/PAA₉/DES₆₈ ionogel under different strains ranging from 1% to 600%.

Fig. S15 Real-time monitoring of the relative resistance changes of (a-b) PEI_{5.6}/PAA₆/DES₇₂ ionogel, (c-d) PEI_{4.9}/PAA₇/DES₇₂ ionogel, and (e-f) PEI_{3.2}/PAA₁₁/DES₇₂ ionogel under different strains ranging from 1% to 600%.

Fig. S16 (a) Resistance changes of the PEI_{3.9}/PAA₉/DES₇₂ ionogel for temperature detection (from 30 to 0 °C). (b) Resistance changes of the PEI_{3.9}/PAA₉/DES₇₂ ionogel during the cooling and heating process (between 30 and -20 °C). The inset displayed the real-time relative resistance changes of PEI_{3.9}/PAA₉/DES₇₂ under 5% strain at - 20 °C.

Fig. S17 Representative stress-strain curves of original and healed ionogel samples at different healing times and temperature.

Fig. S18 The probable self-healing mechanism of the PEI/PAA/DES ionogels.

Fig. S19 Real-time monitoring of relative resistance of (a-b) PEI_{5.6}/PAA₆/DES₇₂ and (c-d) healed PEI_{5.6}/PAA₆/DES₇₂ under different strains ranging from 1% to 600%.

Ionogel-based sensor	GF	Maximum sensing range	Adhesive property (To glass)	Self-healing ability	Transmittance	Ref.					
PEI/PAA/DES	4.68	600%	350 KPa	Yes	90%	This work					
PVA/PVP/[EMIm][DCA]	1.85	400%	NA	Yes	85%	1					
MMA/[VMIm][NTF ₂]	2.3	300%	280 KPa	NA	NA	2					
P(TFEA-co-AAm)/ [EMIM][TFSI]	1.85	600%	1000 N/m	Yes	92%	3					
Chitosan/dextran-TA	0.44	400%	19.7 KPa	Yes	NA	4					
PU/[DEIM][TFSI]	1.54	300%	NA	Yes	NA	5					
PAA/[EMIM]C1	1.6	200%	32 KPa	NA	90%	6					
PU/[PMIM][EFSI]	2.14	200%	NA	Yes	95%	7					
P(VDF-co-HFP)/ P(MMA-co-BMA)/[EMIM][TFSI]	1.62	150%	NA	NA	93%	8					
P(ACMO/UA)/[EMIM][TFSI]	1.56	300%	NA	Yes	NA	9					
PEA/[C ₂ mim][NTf ₂]	1.83	200%	NA	NA	95%	10					
PUU/ [EMIm][DCA]	4.64	300%	Yes	Yes	93%	11					

Table S2. A brief comparison of overall performance between PEI_{3.9}/PAA₉/DES₇₂-based strain sensor and representative ionogel-based sensors reported previously.

^{a)}NA: not applicable

References

- D. Weng, F. Xu, X. Li, S. Li, Y. Li and J. Sun, ACS Appl. Mater. Interfaces, 2020, 12, 57477-57485.
- J. Tie, Z. Mao, L. Zhang, Y. Zhong, X. Sui and H. Xu, *Compos. Pt. B-Eng.*, 2022,
 232, 109612.
- L. Xu, Z. Huang, Z. Deng, Z. Du, T. L. Sun, Z.-H. Guo and K. Yue, *Adv. Mater.*, 2021, 33, 2105306.
- 4. Y. Zhang, J. Xu and H. Wang, RSC Adv., 2021, 11, 37661-37666.
- 5. T. Li, Y. Wang, S. Li, X. Liu and J. Sun, Adv. Mater., 2020, 32, 2002706.
- J. Sun, R. Li, G. Lu, Y. Yuan, X. Zhu and J. Nie, *J. Mater. Chem. C*, 2020, 8, 8368-8373.
- J. Xu, H. Wang, X. Du, X. Cheng, Z. Du and H. Wang, *Chem. Eng. J.*, 2021, 426, 130724.
- J. Lan, Y. Li, B. Yan, C. Yin, R. Ran and L.-Y. Shi, ACS Appl. Mater. Interfaces, 2020, 12, 37597-37606.
- M. Zhang, X. Tao, R. Yu, Y. He, X. Li, X. Chen and W. Huang, J. Mater. Chem. A, 2022, 10, 12005-12015.
- 10. Z. Cao, H. Liu and L. Jiang, Mater. Horizons, 2020, 7, 912-918.
- 11. L. Chen and M. Guo, ACS Appl. Mater. Interfaces, 2021, 13, 25365-25373.