KYb₂F₇:Er³⁺ based nanothermometers: Controlled synthesis, enhanced red emission, and improved sensitivities via crystal-site engineering

Shaoshan Su^a, Wei Song^b, Hongli Wen^{a,c,e,*}, Zhurong Mo^a, Tonghua Wan^a, Lin Yu^{a,c,e}, Weiren Zhao^d, Deshmukh Abdul Hakeem^{a,*}

^aKey Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China

^bAnalysis and Test Center, Guangdong University of Technology, Guangzhou 510006, China

^cSmart Medical Innovation Technology Center, Guangdong University of Technology, 510006 Guangzhou, China

^dSchool of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China

^eJieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China

*Corresponding author:

E-mail addresses: hongliwen@gdut.edu.cn (H. Wen); abdulhakeem.desh@gdut.edu.cn (D. A. Hakeem)

Supporting information

Fig. S1. TEM images of the KYb_{1.8}Ge_{0.15} F_7 :Er³⁺ (2 mol%) nanocrystals prepared with different KF dose at (a) 7, (b) 7.5, (c) 8, (d) 8.5, and (e) 9 mmol, respectively. The scale bar is 100 nm.

Fig. S2. Log-Log plot of UC green and red emission of the KYb_{1.8}M_xF₇:Er³⁺ (2 mol%) (M = (a) Ca²⁺, (b) Ti⁴⁺, (c) Si⁴⁺, (d) Ge⁴⁺, (e) Y³⁺, and (f) Nd³⁺) nanocrystals under the 980 nm laser excitation.

Fig. S3. (a) Pump-power dependent UC emission spectra from Er^{3+} emission at 520, 543, and 655 nm of KYb₂F₇: Er^{3+} (2 mol%) and log-log plot of green and red emission of the KYb₂F₇: Er^{3+} (2 mol%) (inset in a) and KYb_{1.8}M_xF₇: Er^{3+} (2 mol%) (M = (b) Ca²⁺, (c) Ti⁴⁺, (d) Si⁴⁺, (e) Ge⁴⁺, and (f) Y³⁺ nanocrystals under the 1550 nm laser excitation.

Fig. S4. 77-513 K temperature dependent UC emission spectra of the KYb_2F_7 : Er^{3+} (2 mol%) nanocrystals with 980 nm laser excitation.

Fig. S5. 77-513 K temperature dependent UC emission spectra of the $KYb_{1.8}Ca_{0.3}F_7$: Er^{3+} (2 mol%) nanocrystals with 980 nm laser excitation.

Fig. S6. 77-513 K temperature dependent UC emission spectra of the $KYb_{1.8}Ti_{0.15}F_7$: Er^{3+} (2 mol%) nanocrystals with 980 nm laser excitation.

Fig. S7. 77-513 K temperature dependent UC emission spectra of the $KYb_{1.8}Si_{0.15}F_7$: Er^{3+} (2 mol%) nanocrystals with 980 nm laser excitation.

Fig. S8. 77-513 K temperature dependent UC emission spectra of the $KYb_{1.8}Ge_{0.15}F_7:Er^{3+}$ (2 mol%) nanocrystals with 980 nm laser excitation.

Fig. S9. 77-513 K temperature dependent UC emission spectra of the $KYb_{1.8}Y_{0.2}F_7$: Er^{3+} (2 mol%) nanocrystals with 980 nm laser excitation.

Fig. S10. 77-513 K temperature dependent UC emission spectra of the $KYb_{1.8}Nd_{0.2}F_7$:Er³⁺ (2 mol%) with 980 nm laser excitation.