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S1. Methodology 

S1.1. Grid Generation 

The grid of points (geometries) at which the HS, LS and IS energies are calculated is generated as follows. First, the coordinates 

of the minima of the HS and IS states are represented on the basis of the dimensionless Q coordinates of the Vibrational Normal 

Modes (VNM) of the LS minima (𝜈𝑖
𝐿𝑆) (without rotation and translation modes), obtaining a set of displacements for each VNM i 

and state 𝑙 (𝑄𝑖
𝑙). To transform between cartesian and Q coordinates, we use eq. S1: 

𝐐 = �̃�(𝐱 − 𝐱LS) (S1) 

where the transformation matrix �̃� contains the mass-weighted eigenvectors of the LS state.  

Second, the Hessian of the HS and IS states are projected on the Hessian of the reference state (LS). From the projected matrices, 

we extract the diagonal terms (ѡ𝑖
𝑙), which represent the frequency of state l along the dimension of the LS VNM i. From these, we 

estimate the stabilization energy associated with each mode using the harmonic approximation, and the energy gradient of state l 

at the LS minimum (𝜅𝑖
𝑙) (𝐸𝑣𝑒𝑟𝑡,𝑖

𝑙 , see eq. S2).  

𝐸𝑣𝑒𝑟𝑡,𝑖
𝑙 = −

1

2

(𝜅𝑖
𝑙)2

ѡ𝑖
𝑙

 (S2) 

Our notation follows that of the Linear Vibronic Coupling (LVC) model.1 In this case the HS, LS and IS states represent diabatic 

states without interstate coupling, thus they coincide with the adiabatic states. The VNM associated with the largest 𝐸𝑣𝑒𝑟𝑡,𝑖
𝑙  values 

are the dimensional coordinates that stabilize more the HS and IS minima far from the LS reference. The four VNM with largest 

values are taken as main dimensions of the grid, and the remaining ones are considered altogether in a single dimension, that is 

called the combined mode. For each mode, the range of 𝑄𝑖  explored in the grid must include its minimum and maximum value 

among states (𝑄𝑖
𝑀𝐼𝑁 and 𝑄𝑖

𝑀𝐴𝑋). For instance, if 𝑄𝑖
𝐿𝑆 = 1, 𝑄𝑖

𝐼𝑆 = 0 and 𝑄𝑖
𝐻𝑆 = 2 for a given VNM, the range explored in the grid 

needs to be, at least, from 0 to 2. In our case, we have allowed some margin at the extremes, so the initial and final 𝑄𝑖  are defined 

as:  

𝑄𝑖
𝑖𝑛𝑖 = 𝑄𝑖

𝑀𝐼𝑁 +
(𝑄𝑖

𝑀𝐼𝑁 − 𝑄𝑖
𝑀𝐴𝑋) · 𝐵

2
 (S3a) 

𝑄𝑖
𝑓𝑖𝑛 = 𝑄𝑖

𝑀𝐴𝑋 +
(𝑄𝑖

𝑀𝐴𝑋 − 𝑄𝑖
𝑀𝐼𝑁) · 𝐵

2
 (S3b) 

where B is the boundary parameter. We took B=0.5, which implies that the actual range of 𝑄𝑖  is extended by a 50% (from −0.5 to 

2.5 in the example above). The number of points (𝑁𝑖) explored in each direction is defined as eq. S4 

𝑁𝑖 = 𝑀𝐴𝑋 (1 +
𝑄𝑖

𝑓𝑖𝑛 − 𝑄𝑖
𝑖𝑛𝑖

𝑀
; 1) (S4) 

where M is a variable that defines the point separation, and (𝑄𝑖
𝑓𝑖𝑛 − 𝑄𝑖

𝑖𝑛𝑖)/M is approximated to the larger integer. For the ab-

initio grid, in which all geometries are evaluated from electronic structure computations, we took M=3.5, and hence equation S4 

yields 𝑁𝑖 = 3,3,7,3 for the main modes (see Table S1). For the combined mode, we computed 7 equidistant points (𝑁𝐶 = 9) in 

which 𝑄𝑖  of each of the 143 contributing modes is simultaneously and proportionally increased from the minimum to the maximum 

values (see Table S1). The entire grid consists of 1323 points, whose geometry in cartesian coordinates is obtained considering the 

displacement in Q associated with each VNM (𝑄𝑖) to the reference LS geometry by rearranging eq. S1 into:  

𝐱 = 𝐱LS + �̃�′𝐐 (S5) 

The main VNM of [FeII(1-bpp)2]2+ (1) describe a change in the Fe-N coordination sphere through the modification of the Fe-N(pyr) 

and Fe-N(pz) distances, as well as the distortion motion characteristic of FeII-bpp complexes (see Section 2 of the main text). These 
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4 normal modes retrieve a 𝐸𝑣𝑒𝑟𝑡,𝑖
𝑙  of 1.67 eV out of a total 2.04 eV when considering all VNM (see Table S1), while the combined 

mode contributes to the remaining 0.37 eV.  

Table S1. Grid parameters associated with the main and combined VNM. The total 

number of points computed for the ab-initio (ab) and ML grids results from the 

product of 𝑁𝑖
𝑎𝑏 and 𝑁𝑖

𝑀𝐿  (1323 and 26208, respectively). 

Type 𝑖 𝐸𝑖
𝑣𝑒𝑟𝑡  𝑄𝑖

𝑀𝐴𝑋 𝑄𝑖
𝑀𝐼𝑁 𝑁𝑖

𝑎𝑏 𝑁𝑖
𝑀𝐿  

main 

1 0.24 1.05 –5.19 3 6 

2 0.22 5.03 –1.00 3 6 

8 1.09 16.01 –3.20 7 14 

24 0.12 0.51 –2.56 3 4 

combined  0.37 - - 7 13 

At each point of the grid, we have evaluated the electronic enthalpy (𝐻𝑒𝑙𝑒𝑐
𝑙 ) of the LS, IS and HS states using DFT (see 

Computational Details). The collection of LS, IS and HS energies provides a first estimation of the Potential Energy Surface of 

these states in the region contained between the minima. The resulting PES is, however, too sparse to be used in subsequent steps 

of the process (see discussion in Section S5). To increase the density of points, we generated a second grid that is evaluated using 

Machine Learning (ML) methods. The new grid is generated with the same procedure described above, but changing the parameter 

M (eq. S4) from 3.5 to 1.5, which results in 𝑁𝑖 = 6,6,14,4 the four main modes (see Table S1). The combined mode is also evaluated 

in shorter intervals, with 𝑁𝐶 = 13. The total number of points of this ML grid is 26208, which would represent a huge 

computational effort for ab-initio methods but is accessible to Machine Learning (ML) techniques. The size of the grid is maintained 

from section S1.1; the range of 𝑄𝑖  values is identical (𝑄𝑖
𝑀𝐼𝑁 and 𝑄𝑖

𝑀𝐴𝑋) as well as the boundary parameter (B in eq. S3a-b).  

S1.2. Evaluation of the Free Energy at Grid Points 

In section S1.1 we have described how we generated the grid in which the 𝐻𝑒𝑙𝑒𝑐
𝑙  for the LS, IS and HS states has been computed. 

To incorporate the vibrational enthalpy and entropy contributions (𝐻𝑣𝑖𝑏,𝑖
𝑙  and 𝑆𝑣𝑖𝑏,𝑖

𝑙 ), we have based our approach on the harmonic-

oscillator expressions (eq. S6 and S7).  

𝐻𝑣𝑖𝑏,𝑖
𝑙 =

1

2
ℎ𝜈𝑖

𝑙 +
ℎ𝜈𝑖

𝑙

𝑒ℎ𝜈𝑖
𝑙 𝑘𝐵𝑇⁄ − 1

 (S6) 

𝑆𝑣𝑖𝑏,𝑖
𝑙 =

ℎ𝜈𝑖
𝑙

𝑇

1

𝑒ℎ𝜈𝑖
𝑙 𝑘𝐵𝑇⁄ − 1

− 𝑘𝐵𝑙𝑛 (1 − 𝑒−ℎ𝜈𝑖
𝑙 𝑘𝐵𝑇⁄ ) (S7) 

where l and i refer to the state and the ith vibrational normal mode, respectively (as in the main text). These expressions (or simpler 

ones) are routinely employed to incorporate vibrational contributions to the spin state energies of SCO transitions and,1–3 in doing 

so, retrieve the total free energy 𝐺𝑡𝑜𝑡
𝑙  as eq. S8.  

𝐺𝑡𝑜𝑡
𝑙 = 𝐻𝑒𝑙𝑒𝑐

𝑙 + ∑ 𝐻𝑣𝑖𝑏,𝑖
𝑙

𝑖 − 𝑇(∑ 𝑆𝑣𝑖𝑏,𝑖
𝑙

𝑖 + 𝑆𝑒𝑙𝑒𝑐
𝑙 ) (S8) 

However, these expressions are meant to be applied at the minima (i.e. at 𝑄𝑖,𝑅𝐸𝐹
𝑙 ), using the corresponding set of VMN (𝜈𝑖

𝑙) for 

each state. In this case, however, we aim at evaluating these contributions out of the minima, along the entire grid of points. To do 

so, the contributions of 𝐻𝑣𝑖𝑏,𝑖
𝑙  and 𝑆𝑣𝑖𝑏,𝑖

𝑙  have been modified as follows:  

To start, it is indeed useful to discuss the application of the zero-point energy corrections (ZPE) under the same scenario. The ZPE 

corrections are the 0 K version of eq. S6 (see eq. S9), and its energy contribution at the minimum is the potential energy of the 

harmonic oscillator at its maximum extension (𝑄𝑖
𝑙 = ±1, compare eq. S9 and eq. S10):  

𝑍𝑃𝐸𝑖
𝑙 =

1

2
ℎ𝜈𝑖

𝑙  (S9) 

𝐸𝐻𝑎𝑟𝑚,𝑖
𝑙 =

1

2
ℎ𝜈𝑖

𝑙𝑄𝑖
𝑙2

 (S10) 
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The corrected (i.e. including ZPE) total energy of the harmonic oscillator within the 𝑄𝑖
𝑙 = ±1 range is constant. For that to be true, 

the actual contribution of the ZPE correction to the total energy must decrease, when moving away from the minimum (𝑄𝑖
𝑙 = 0), 

following a parabola, as in eq. S11.  

𝐸𝑍𝑃𝐸,𝑖
𝑙 (𝑄) = 𝐸𝑍𝑃𝐸,𝑖

𝑙 (𝑄 = 0) − 𝐸𝐻𝑎𝑟𝑚,𝑖
𝑙 =

1

2
ℎ𝜈𝑖

𝑙 −
1

2
ℎ𝜈𝑖

𝑙𝑄𝑖
𝑙2

=
1

2
ℎ𝜈𝑖

𝑙 (1 − 𝑄𝑖
𝑙2

) (S11) 

In our case, we assumed that the same parabolic decrease (or similar) can be applied to correct 𝐻𝑣𝑖𝑏,𝑖
𝑙  out of the minima. To this 

purpose, we introduced a set of factors 𝑓𝑖
𝑙 , whose aim is to enforce this parabolic decrease. These factors are different for each 

state, for each point in the grid, and for each VNM, and were tentatively defined as in eq. S12.    

∆𝑄𝑖
𝑙 = 𝑄𝑖

𝑙 − 𝑄𝑖,𝑅𝐸𝐹
𝑙   

if |∆𝑄𝑖
𝑙| ≤ 1 𝑓𝑖

𝑙 = 1 − ∆𝑄𝑖
𝑙2

 
(S12) 

if |∆𝑄𝑖
𝑙| > 1 𝑓𝑖

𝑙 = 0 

The factor effectively diminishes the 𝐻𝑣𝑖𝑏,𝑖
𝑙  contribution of a given VNM as it moves away from the minimum, until it cancels its 

contribution if |∆𝑄𝑖
𝑙| > 1. So, the contribution of a VNM to the vibrational enthalpy at any Q coordinate can be defined as: 

𝐻𝑣𝑖𝑏,𝑖
𝑙 (𝑄) =

1

2
ℎ𝜈𝑖

𝑙 (1 − ∆𝑄𝑖
𝑙2

) = 𝐻𝑣𝑖𝑏,𝑖
𝑙 (𝑄 = 0) · 𝑓𝑖

𝑙 (S13) 

This definition of 𝑓𝑖
𝑙  is valid as long as the total energy 𝐻𝑒𝑙𝑒𝑐

𝑙  of a grid point (i.e. the computed one) corresponds to the energy of 

the minimum (𝐻𝑒𝑙𝑒𝑐,0
𝑙 ), plus VNM contributions following the expression of the harmonic oscillator with 𝜈𝑖

𝑙  (𝐸𝐻𝑎𝑟𝑚,𝑖
𝑙 ) (eq. S14). 

That is, a perfectly harmonic case. As expected, this is not what happens in real molecules, and 𝐻𝑒𝑙𝑒𝑐
𝑙  must be computed with ab 

initio or machine learning techniques, and not estimated from simple harmonic oscillator expressions. 

𝐻𝑒𝑙𝑒𝑐
𝑙 = 𝐻𝑒𝑙𝑒𝑐,0

𝑙 + ∑ 𝐸𝐻𝑎𝑟𝑚,𝑖
𝑙

𝑖

 (S14) 

Besides the impact of anharmonicity in 𝐻𝑒𝑙𝑒𝑐
𝑙 , which is properly addressed by our computation of 𝐻𝑒𝑙𝑒𝑐

𝑙 , we noticed two other 

effects that induce a deviation from a harmonic behaviour. The first one is second-order effects, or couplings between VNM. These 

occur when the frequency of a given VNM (𝜈𝑖
𝑙) changes as the molecule moves in the direction of a second VNM (𝜈𝑗

𝑙). The second 

effect only applies to the IS and HS states, and stems from our need to employ ѡ𝑖
𝑙  values (instead of 𝜈𝑖

𝑙) to describe them. That is, 

for the LS state we can use the eigenvalues of its diagonal hessian (𝜈𝑖
𝐿𝑆), but for the IS and HS states we need to rotate their hessian 

to match the basis of LS VNM, yielding a non-diagonal matrix. Non-zero non-diagonal values appear (ѡ𝑖𝑗
𝑙 ), and the diagonal values 

(ѡ𝑖𝑖
𝑙 = ѡ𝑖

𝑙) are generally larger than (𝜈𝑖
𝑙). As a result of both effects, the energy at a given point of the grid deviates from the 

harmonic contributions evaluated with 𝜈𝑖
𝑙 , and the expression of the factors has to be slightly adapted. 

To retain the harmonic oscillator view as much as possible, while incorporating the aforementioned deviations, effective oscillator 

frequencies were defined (𝜈𝑒𝑓𝑓,𝑖
𝑙 ). These are small modifications to 𝜈𝑖

𝑙  (or ѡ𝑖
𝑙), and are calculated with the constrain that, when the 

harmonic oscillator expressions are applied, one recovers the computed energy at the grid point 𝐻𝑒𝑙𝑒𝑐
𝑙 (𝑄):  

𝐻𝑒𝑙𝑒𝑐
𝑙 (𝑄) = 𝐻𝑒𝑙𝑒𝑐,0

𝑙 + ∑ 𝐸𝐴𝑛ℎ𝑎𝑟𝑚,𝑖
𝑙 (𝑄)

𝑖

= 𝐻𝑒𝑙𝑒𝑐,0
𝑙 + ∑

1

2
𝜈𝑒𝑓𝑓,𝑖

𝑙 ∆𝑄𝑖
𝑙 2

𝑖

 (S15) 

In practice, the difference between 𝜈𝑒𝑓𝑓,𝑖
𝑙  and 𝜈𝑖

𝑙  is very small (ca. 1%), except in soft-modes and those associated with large |∆𝑄𝑖
𝑙| 

values. With this approach, one also obtains the contribution of each VNM to the total energy, which we label as 𝐸𝐴𝑛ℎ𝑎𝑟𝑚,𝑖
𝑙 . Now, 

the definition of 𝑓𝑖
𝑙  can be updated to the final: 
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if numerator > 0 𝑓𝑖
𝑙 = [𝐻𝑣𝑖𝑏,𝑖

𝑙 (𝑄 = 0) − 𝐸𝐴𝑛ℎ𝑎𝑟𝑚,𝑖
𝑙 (𝑄)]/𝐻𝑣𝑖𝑏,𝑖

𝑙 (𝑄 = 0) 
(S16) 

else: 𝑓𝑖
𝑙 = 0 

Finally, these 𝜈𝑒𝑓𝑓,𝑖
𝑙  are used to compute 𝐻𝑣𝑖𝑏,𝑖

𝑙  in eq. S6, in combination with the associated 𝑓𝑖
𝑙  (eq. S16). In turn, 𝑆𝑣𝑖𝑏,𝑖

𝑙  is computed 

directly using equation S7. For the reference LS state, the original 𝜈𝑖
𝐿𝑆 frequencies are used to compute 𝑆𝑣𝑖𝑏,𝑖

𝑙 , while for the IS and 

HS states, a different set of 𝜈𝑒𝑓𝑓,𝑖
𝑙  is used, which accounts for the impact of rotating their hessian to match the basis of LS VNM, 

as explained above. Having this in mind, the final expression for 𝐺𝑡𝑜𝑡
𝑙  at a given grid point is: 

𝐺𝑡𝑜𝑡
𝑙 = 𝐻𝑒𝑙𝑒𝑐

𝑙 + ∑ (𝐻𝑣𝑖𝑏,𝑖
𝑙 · 𝑓𝑖

𝑙
𝑖 ) − 𝑇(∑ 𝑆𝑣𝑖𝑏,𝑖

𝑙
𝑖 + 𝑆𝑒𝑙𝑒𝑐

𝑙 ) (S17) 

S1.3. Example  

Consider a VNM with 𝜈𝑖
𝑙  = 200 cm-1 and 𝜈𝑒𝑓𝑓,𝑖

𝑙  = 240 cm-1. At 𝑄=0, we set 𝐻𝑒𝑙𝑒𝑐,0
𝑙  as 0, and 𝐻𝑣𝑖𝑏,𝑖

𝑙 (𝑄 = 0) is 4.56·10-4 atomic units 

(as a result of applying eq. S6). In the range of 𝑄 between 0 and ±2, 𝐻𝑒𝑙𝑒𝑐
𝑙 (𝑄) evolves as defined in equation S14 and shown in 

Figure S1. On top of it, 𝐻𝑣𝑖𝑏,𝑖
𝑙 (𝑄) contributions are added with eq. S13. Adopting the 𝑓𝑖

𝑙  resulting from the harmonic oscillator (eq. 

S12), leads to 𝐻𝑣𝑖𝑏,𝑖
𝑙 (𝑄) being smaller than 𝐻𝑒𝑙𝑒𝑐

𝑙 (𝑄) above Q=1, which is incorrect (see blue points below black points in Figure 

S1). This is caused by 𝜈𝑒𝑓𝑓,𝑖
𝑙  being larger than 𝜈𝑖

𝑙  due to anharmonicity. When using 𝑓𝑖
𝑙  as defined in eq. S16, we recover the 

expected evolution of 𝐻𝑣𝑖𝑏,𝑖
𝑙 (𝑄) along this VNM, with a flat region close to the minimum where 𝐻𝑣𝑖𝑏,𝑖

𝑙 (𝑄) = 𝐻𝑣𝑖𝑏,𝑖
𝑙 (𝑄 = 0), and 

the harmonic increase resulting from 𝐻𝑒𝑙𝑒𝑐
𝑙 (𝑄) at larger displacements. Notice that this is just a representation of how the factors 

are computed, and the type of behaviour we wanted to achieve. In the grid, 𝐻𝑒𝑙𝑒𝑐
𝑙 (𝑄) is evaluated with ab initio or machine learning 

methods, and 𝜈𝑒𝑓𝑓,𝑖
𝑙  changes when moving along the corresponding VNM (𝜈𝑖

𝑙) instead of being constant 

 
Figure S1. Example of the evolution of (black) 𝐻𝑒𝑙𝑒𝑐

𝑙 (𝑄) and of 𝐻𝑒𝑙𝑒𝑐
𝑙 (𝑄) + 

𝐻𝑣𝑖𝑏,𝑖
𝑙 (𝑄)·𝑓𝑖

𝑙, with 𝑓𝑖
𝑙 defined as in equations (blue) S12 and (red) S16.  

S2. Spin State Energetics of the SCO 

Table S2. Comparison of thermodynamic values associated with the thermal SCO of 1 computed with different DFT methods. The 

experimentally-reported 𝑇1/2 of crystals based on 1 range from 288 K in [FeII(1-bpp)2][BF4]2·3H2O to 171 K in [FeII(1-bpp)2][PF6]2. For 

crystals of [FeII(1-bpp)2][BF4]2, PBE+U computations have been performed under different approximations, and the impact of crystal 

packing effects were evaluated by comparing the HS-LS energy gap in gas phase (gp) and solid state (ss) conditions, using the optimized 

crystal geometries. Enthalpy values are given per molecule and in kJ·mol-1 and entropy values in kJ·K-1·mol-1. 

 Minimum (type) ∆𝐇𝐞𝐥𝐞𝐜
𝐇𝐒−𝐋𝐒 ∆𝐇𝐯𝐢𝐛

𝐇𝐒−𝐋𝐒(𝑻𝟏/𝟐) ∆𝐒𝐯𝐢𝐛
𝐇𝐒−𝐋𝐒(𝑻𝟏/𝟐) 𝑻𝟏/𝟐(K) Ref. 

1 B3LYP* 24.0 −3.0 60.8 283 this work 

[FeII(1-bpp)2][BF4]2 PBE+U+D2 (ss) 19.1 −1.9 52.8 259 1 

[FeII(1-bpp)2][BF4]2 PBE+U+D2 (gp) 15.9 - - - 1 

[FeII(1-bpp)2][BF4]2 PBE+U+D3BJ (ss) 19.2 −2.0 52.8 259 2 

[FeII(1-bpp)2][BF4]2 PBE+U+D3BJ (gp) 20.6 - - - 2 

  ∆𝐇𝐭𝐨𝐭
𝐇𝐒−𝐋𝐒 ∆𝐒𝐯𝐢𝐛

𝐇𝐒−𝐋𝐒(𝑻𝟏/𝟐) 𝑻𝟏/𝟐(K) Ref. 

 Experiment 17.2 52.8 259 5 

Compound 1 in the crystal [FeII(1-bpp)2][BF4]2 has been studied with the PBE+U method in the solid state under different 

dispersion corrections.1,2 The goal of these works was to benchmark the U parameter that had to be used to reproduce the energy 
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contributions reported experimentally. For this reason, ∆Svib
HS−LS and 𝑇1/2 match the experimental values. The PBE+U computations 

were performed at both the solid state (ss in Table S2), and gas phase (gp) levels on the same structure, the solid state minima, to 

evaluate the impact of intermolecular interactions on its energetics. These do not alter ∆Helec
HS−LS significantly. Their contribution 

amounts 3.2 kJ/mol with PBE+U+D2 (19.1–15.9, see Table S2) and −1.4 kJ/mol with PBE+U+D3BJ (19.2–20.6, see Table S2). 

S3. Structure of the MECP 

Table S3. Comparison of minima and MECP structures. Given that the MECP evolve with temperature, the values shown are the averages 

among the number of MECP found along the entire set of temperatures explored. 

Structure avg. d(Fe-N)  / Å max. d(Fe-N) / Å min. d(Fe-N) / Å Σ / º CShM 

HS-LS MECP 2.110 2.155 2.034 115.65 3.715 

HS-IS MECP 2.109 2.176 2.009 107.78 3.260 

IS-LS MECP 2.133 2.195 2.038 115.99 3.746 

HS Minimum 2.196 2.213 2.172 151.60 5.962 

IS Minimum 2.111 2.177 1.980 107.04 3.225 
LS Minimum 1.985 2.010 1.936 86.50 2.053 

𝛴 = ∑ |90 − 𝛽𝑖|
12
𝑖=1  ; where 𝛽𝑖 are the 12 cis N-Fe-N angles about the iron atom 

The three types of MECP (HS/LS, HS/IS and IS/LS) are associated with similar values for the d(Fe-N), Σ and Continuous Shape 

Measures (CShM) descriptors, which in turn are similar to those of the IS minimum. Despite this fact, the MECP involving the IS 

are well above in energy than the HS/LS MECP. This suggests that other types of molecular motions that are not captured by the 

three chosen descriptors might be energetically relevant. We have selected these descriptors because they are especially suitable to 

capture changes in the first coordination sphere in the form of an elongation of the Fe-N distances, or a Jahn-Teller distortion.  

MECPHS/LS 

    
MECPHS/IS 

   
MECPIS/LS 

   
Figure S2. Evolution of the structural descriptors of the (top) HS-LS MECP, (middle) HS-IS MECP, and (bottom) IS-LS MECP along 
temperature. Values for the minima are indicated with stars (HS-above, IS-center, LS-below). The horizontal axis represents the different MECP 

connecting the HS and LS free-energy surfaces found along the range of temperatures explored (10-300K), ordered from low- to high- 

temperature.  
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S4. Temperature-Evolution of the Energy Barriers 

  
Figure S3. Activation energy for the (left) thermal LIESST relaxation process (i.e. ∆𝐺𝑏

≠) and (right) the thermal SCO transition (i.e. 

∆𝐺𝑓
≠) in the direct pathways, obtained using the ML grid. Results on the “ab initio” grid are shown in Figure S6. 

S5. Results using the ab-initio Grid 

In section S1.1 we describe the initial “ab-initio grid” that is used as a starting point to generate the denser grid, which is evaluated 

using Machine-Learning (ML) methods (“ML grid”). In the main text, we directly describe the results obtained on the extended 

grid, but it might be illustrative to compare the results we obtain with the ab-initio vs. ML grids. With the ab-initio grid, we 

obtain 𝑇𝐿𝐼𝐸𝑆𝑆𝑇 ≈ 90 𝐾 (vs. 80 K) for the direct pathway, 𝑇𝐿𝐼𝐸𝑆𝑆𝑇 ≈ 200 𝐾 (vs. 195 K) for the indirect pathway, and 𝑇1/2 = 265 𝐾. 

The slightly higher 𝑇𝐿𝐼𝐸𝑆𝑆𝑇  stem from the fact that a smaller number of ECP are identified (from 3 at 10 K to 30 at 300 K), which 

implies that the MECP are higher in energy, and hence the kinetics are slower (i.e. larger 𝜏𝐷 and 𝜏𝐼), so the temperature required to 

reach the second timescale (our definition of 𝑇𝐿𝐼𝐸𝑆𝑆𝑇  and 𝑇1/2) is higher. The smaller number of ECP is not only due to the smaller 

number of grid points, but is also related to the methods ability to identify ECP. The problem is related to the fact that we evaluate 

the FES at specific points, instead of continuously. To illustrate our point, in Figure S4 we show a scheme of the evolution of 

hypothetical HS and LS FES that cross at a given point, an ECP. The left plot illustrates the case of a sparse grid, in which the FES 

are evaluated (circles) at equidistant steps quite separate from each other. The energy criterion (∆𝐺 < 𝑘𝐵𝑇) is evaluated between 

points at the same geometry (i.e. same position in the horizontal axis, dotted lines in S4). In sparse grid (left), this criterion might 

fail at detecting an ECP if the FES are too steep, since the evaluated points adjacent to the ECP might be already too far apart in 

energy. A denser grid (right) can properly identify the ECP and provide an accurate energy evaluation (Figure S4).  

  
Figure S4. Representation of hypothetical HS and LS FES crossing at a point in space, an ECP. The circles 

represent grid points, characterized by ΔQ, at which the energy is evaluated. The dotted lines indicate that the 

energy criterion of ∆𝐺 < 𝑘𝐵𝑇 is evaluated between energies computed at the same point in ΔQ.  

In practice, the difference in 𝑇𝐿𝐼𝐸𝑆𝑆𝑇  obtained with the ab-initio vs. ML grids is not very large (90 vs. 80 K, respectively). However, 

artefacts appear in the evaluation of the energy barriers (∆𝐺𝑏
≠, see Figure S5) and the half-life times (see Figure S6) with the sparser 

ab-initio grid, so the characterization of the MECP with the sparser ab-initio grid is far from optimal. 
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Figure S5. Temperature-evolution of the half-life times associated with the direct (𝜏𝐷) and indirect (𝜏𝐼) pathways for the (left) 

forward (LS-to-HS, i.e. thermal SCO) and (right) backward (HS-to-LS, i.e. LIESST) reactions, using the “ab-initio” grid. Results on 

the ML grid are shown in Figure 2 of main text. 

  
Figure S6. Activation energy for the (left) thermal LIESST relaxation process (i.e. ∆𝐺𝑏

≠) and (right) the thermal SCO transition (i.e. 

∆𝐺𝑓
≠) obtained using the “ab-initio” grid. The results obtained with the ML grid are shown in Figure S3. 
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S6. Assessment on the Quality of the ML grid. 

At this stage, it is worth mentioning few technical aspects related to the quality of the protocol presented in Section S1, and in 

particular to the quality of the grid. First, the MECP are always at the middle point of the space explored in any of the main and 

combined dimensions. Accordingly, in Figure 1 the MECP appear far from the extreme values of |∆𝑄|. This indicates that the grid 

is sufficiently large to find the relevant MECP. Second, the number of HS-LS ECP that are identified in the ML grid increases 

continuously from 25 at 10 K, to 150 at 𝑇𝐿𝐼𝐸𝑆𝑆𝑇 , and up to 500 at 300 K. Notice that grid points are classified as ECP if the energy 

difference lies below 𝑘𝐵𝑇, which becomes a softer threshold at higher temperatures. Such high number of ECPs suggests that the 

grid is not only sufficiently large, but also sufficiently dense, to properly identify the MECP. Third, while the three types of MECP 

(HS/LS, HS/IS and IS/LS) are associated with similar values for the d(Fe-N), Σ and CShM descriptors, the IS is well above in 

energy than the HS/LS MECP. This suggests that other types of molecular motion that are not captured by d(Fe-N), Σ and CShM, 

might be energetically relevant, which reinforces our approach based on the exploration of the FES along the entire geometrical 

space instead of searching along predefined dimensions. 

𝐻𝑒𝑙𝑒𝑐
𝐻𝑆  𝐻𝑒𝑙𝑒𝑐

𝐼𝑆  𝐻𝑒𝑙𝑒𝑐
𝐿𝑆  

   
∆𝐻𝑒𝑙𝑒𝑐

𝐻𝑆−𝐿𝑆 ∆𝐻𝑒𝑙𝑒𝑐
𝐼𝑆−𝐿𝑆 

  
Figure S7. Comparison between computed and predicted 𝐻𝑒𝑙𝑒𝑐

𝑙  values for 200 randomly selected geometries of the ML grid for the HS (red), 

IS (purple) and LS (blue) states. Also shown the relative energy differences between states. Diagonal black dashed lines indicate perfect 

correlation.  

In Section S1.1, we describe the generation of the ML grid. The 𝐻𝑒𝑙𝑒𝑐
𝑙  values for l=HS, IS, LS are evaluated with ML models. The 

MAE error associated with the ML prediction is evaluated on a test set of 200 randomly selected geometries by comparison with 

ab-initio results (at the B3LYP*-D3BJ/Def2-SVP level). The overall MAE is of around 1.3 kJ/mol, with little differences among 

spin states (1.3 kJ/mol for LS and HS, 1.4 kJ/mol for IS). These errors partially compensate when computing relative energy 

differences, so that ∆𝐻𝑒𝑙𝑒𝑐
𝐻𝑆−𝐿𝑆 and ∆𝐻𝑒𝑙𝑒𝑐

𝐼𝑆−𝐿𝑆 have MAE of 0.5 and 0.6 kJ/mol, respectively. 
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S7. Assessment on the TST parameters. 

𝑘 = 𝑝𝑠ℎ ·
𝜅𝑘𝑏𝑇

ℎ
𝑒−

∆𝐺≠

𝑅𝑇  (S18) 

As discussed in the main text, the rate constants have been computed using the non-adiabatic version of TST proposed in ref. 6, 

and taking both the transmission coefficient (𝜅) and the hopping probability (𝑝𝑠ℎ) as 1. These parameters appear in the pre-factor 

of equation S18 and, as such, are less relevant than the energy barriers in the exponential part. Nevertheless, their value has an 

impact on the prediction of 𝑇𝐿𝐼𝐸𝑆𝑆𝑇  (less on 𝑇1/2 as it is thermodynamically controlled). Changes in 𝜅 do shift the resulting 𝑇𝐿𝐼𝐸𝑆𝑆𝑇  

by few K, but without relative changes between the different pathways. However, this is different for 𝑝𝑠ℎ. Different hopping 

probabilities should ideally be used for the direct and indirect pathways, accounting for their different SOC. Approximate SOC 

values are 50 cm-1 for HS-IS and LS-IS crossings, and 1 cm-1 for HS-LS,7 which would correspond to 𝑝𝑠ℎ=0.0001 for the direct 

pathway and 𝑝𝑠ℎ=0.01 for each of the two steps of the indirect pathway.6 Using these values, we retrieve 𝑇𝐿𝐼𝐸𝑆𝑆𝑇 =134 K (vs. 80 K) 

for the direct pathway, and 𝑇𝐿𝐼𝐸𝑆𝑆𝑇 =286 K (vs. 195 K) for the indirect pathway. While the shift is significant in quantitative terms, 

it does not modify the conclusions we extract from the application of our protocol to compound 1. Indeed, these shifts are largely 

compensated by choosing the minute or the hour timescale in the definition of 𝑇𝐿𝐼𝐸𝑆𝑆𝑇 , instead of the second timescale, which could 

compare even better with experimental timescales. Under the hour (minute) timescale, our 𝑇𝐿𝐼𝐸𝑆𝑆𝑇  predictions for the direct and 

indirect pathways with the modified 𝑝𝑠ℎ are 85 K (104 K), and 200 K (241 K), very close to the values reported in the main text 

(80 K and 195 K) (see Table S4).  

Table S4. Comparison of 𝑇𝐿𝐼𝐸𝑆𝑆𝑇  predictions of 1, for the direct and indirect pathways under different combinations of 

the 𝑝𝑠ℎ parameter within TST, and the timescale to assign 𝑇𝐿𝐼𝐸𝑆𝑆𝑇 . In bold, the combination discussed in the main text.  

𝑝𝑠ℎ timescale 𝑇𝐿𝐼𝐸𝑆𝑆𝑇  direct pathway (K) 𝑇𝐿𝐼𝐸𝑆𝑆𝑇  indirect pathway (K) 

Standard (= 1.0) second 80 195 

Standard (= 1.0) minute 66 142 
Standard (= 1.0) hour 57 132 

Modified (= 0.01 and 0.0001) second 134 286 

Modified (= 0.01 and 0.0001) minute 104 241 

Modified (= 0.01 and 0.0001) hour 85 200 
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