Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2022

## **Supporting Information**

### for

# Stimuli-responsive helical polymeric particles with amplified circularly polarized luminescence

Huimin Duan<sup>ab</sup>, Hongkun Pan<sup>ab</sup>, Jiawei Li\*abc and Dongming Qi \*abc

<sup>a</sup> Key Laboratory of Advanced Textile Materials and Manufacturing Technology,

Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China

<sup>b</sup> Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing

& Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China

<sup>c</sup> Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing,

312000, China.

### Contents

Monomer structures characterization.

Fig. S1 GPC traces of P<sub>55</sub> particles prepared in CH<sub>2</sub>Cl<sub>2</sub>/*n*-heptane with varied ratio: 1/6; 1/7; 1/8; 1/9 (mL/mL).

Fig. S2 SEM images and GPC traces (middle) of growth process of the P<sub>55</sub> particles as copolymerization time. Other copolymerization conditions as shown in Table S2.

Fig. S3 SEM images of  $P_{55}$  particles with varied total monomer concentrations (a.  $1.25 \times 10^{-2}$  M; b.  $5 \times 10^{-2}$  M; c.  $10^{-1}$  M; Other copolymerization conditions as shown in Table S3. For  $2.5 \times 10^{-2}$  M, see Fig. 1e), with varied Rh catalyst concentrations (d.  $1.25 \times 10^{-4}$  M; e.  $5 \times 10^{-4}$  M; f.  $10^{-3}$  M; Other copolymerization conditions as shown in Table S4. For  $2.5 \times 10^{-4}$  M, see Fig.1e), and SEM images of copolymeric particles varied feed mass ratio of the two monomers M1/M2 (g. P2; h.  $P_{64}$ ; i.  $P_{73}$ ; j.  $P_{82}$ ; k.  $P_{91}$ ; l. P1; Other copolymerization conditions as shown in Table S5. For  $P_{55}$ , see Fig.1e).

Fig. S4 GPC traces of P<sub>55</sub> particles with varied total monomer concentrations.

Fig. S5 GPC traces of P<sub>55</sub> particles with varied Rh catalyst concentrations.

Fig. S6 GPC traces of  $P_X$  particles with the varied feed mass ratio of the two monomers M1/M2.

Fig. S7 SEM-EDS mapping of copolymeric particles P<sub>X</sub> with varied M1/M2 (a. P<sub>55</sub>;
b. P<sub>64</sub>; c. P<sub>73</sub>; d. P<sub>82</sub>; e. P<sub>91</sub>; Other copolymerization conditions as shown in Table
S5. For P<sub>55</sub>, see Fig. S3).

Fig. S8 CD and UV–Vis spectra of M1and M2 (0.5 mM, in CHCl<sub>3</sub>).

Fig. S9 Fluorescence excitation spectra of  $P_{55}$  monitored at 430, 480, 500, 530, 550 and 600 nm.

Fig. S10 Fluorescence spectra of M1 and M2 (0.5 mM,  $\lambda_{ex} = 365$  nm, in CHCl<sub>3</sub>).

Fig. S11 Fluorescence spectra of P<sub>55</sub> at different excitation wavelengths.

Table S1 Effects of the mixed solvent (CH<sub>2</sub>Cl<sub>2</sub>/*n*-heptane) ratio on copolymerization and formation of particles <sup>a</sup>.

Table S2 Copolymerization and growth of P<sub>55</sub> particles <sup>a</sup> with time.

Table S3 Effects of total monomer concentration on P<sub>55</sub> particles <sup>a</sup>.

Table S4 Effects of Rh catalyst concentration on P<sub>55</sub> particles <sup>a</sup>.

Table S5 Effects of feed mass ratio of the two monomers M1/M2 on copolymeric particles <sup>a</sup>.

#### Monomer structures characterization.

Fig. 1a: In the FT-IR spectrum of M1, the characteristics for -C=C bond (2124 cm<sup>-1</sup>) and amide (I and II, 1663, 1570 cm<sup>-1</sup>) were clearly observed. In the FT-IR spectrum of M2, the characteristics for -C=C bond (2121 cm<sup>-1</sup>), -C-N- bond (1151 cm<sup>-1</sup>) and -S=O bond (1333 cm<sup>-1</sup>) clearly appeared.

Fig. 1b and 1c: The particular chemical shifts of H and C for  $-HC \equiv (\delta_H 2.35 \text{ ppm}, \delta_C 68.7 \text{ ppm})$  and  $-(CH_3)_3 (\delta_H 1.43 \text{ ppm}, \delta_C 32.8 \text{ ppm})$  were obviously observed in the <sup>1</sup>H NMR and <sup>13</sup>C NMR spectrum of M1. And the particular chemical shifts of H and C for  $-HC \equiv (\delta_H 1.95 \text{ ppm}, \delta_C 46.5 \text{ ppm}), -Ar-H (\delta_H 7.34 \sim 8.65 \text{ ppm}, \delta_C 114.6 \sim 155.7 \text{ ppm})$  and  $-N(CH_3)_2 (\delta_H 2.95 \text{ ppm}, \delta_C 35.6 \text{ ppm})$  were obviously presented in the NMR spectrum of M2.



Fig. S1 GPC traces of  $P_{55}$  particles prepared in CH<sub>2</sub>Cl<sub>2</sub>/*n*-heptane with varied ratio: 1/6; 1/7; 1/8; 1/9 (mL/mL).



Fig. S2 SEM images and GPC traces (middle) of growth process of  $P_{55}$  particles as copolymerization time. Other copolymerization conditions as shown in Table S2.



**Fig. S3** SEM images of  $P_{55}$  particles with varied total monomer concentrations (a. 1.25  $\times 10^{-2}$  M; b. 5  $\times 10^{-2}$  M; c. 10<sup>-1</sup> M; Other copolymerization conditions as shown in Table S3. For 2.5  $\times 10^{-2}$  M, see Fig. 1e), with varied Rh catalyst concentrations (d. 1.25  $\times 10^{-4}$  M; e. 5  $\times 10^{-4}$  M; f. 10<sup>-3</sup> M; Other copolymerization conditions as shown in Table S4. For 2.5  $\times 10^{-4}$  M, see Fig.1e), and SEM images of copolymeric particles varied feed mass ratio of the two monomers M1/M2 (g. P2; h. P<sub>64</sub>; i. P<sub>73</sub>; j. P<sub>82</sub>; k. P<sub>91</sub>; 1. P1; Other copolymerization conditions as shown in Table S5. For P<sub>55</sub>, see Fig.1e).



Fig. S4 GPC traces of  $P_{55}$  particles with varied total monomer concentrations.



Fig. S5 GPC traces of P<sub>55</sub> particles with varied Rh catalyst concentrations.



Fig. S6 GPC traces of  $P_X$  particles with the varied feed mass ratio of the two monomers M1/M2.



Fig. S7 SEM-EDS mapping of copolymeric particles  $P_X$  with varied M1/M2 (a.  $P_{55}$ ; b.  $P_{64}$ ; c.  $P_{73}$ ; d.  $P_{82}$ ; e.  $P_{91}$ ; Other copolymerization conditions as shown in Table S5. For  $P_{55}$ , see Fig. S3).



Fig. S8 CD and UV–Vis spectra of M1 and M2 (0.5 mM, in CHCl<sub>3</sub>).



Fig. S9 Fluorescence excitation spectra of  $P_{55}$  monitored at 430, 480, 500, 530, 550 and 600 nm.



Fig. S10 Fluorescence spectra of M1 and M2 (0.5 mM,  $\lambda_{ex} = 365$  nm, in CHCl<sub>3</sub>).



Fig. S11 Fluorescence spectra of P<sub>55</sub> at different excitation wavelengths.

| CH <sub>2</sub> Cl <sub>2</sub> / <i>n</i> -heptane | $M_{\rm n}, \exp^{\rm b}/10^{3}$ | PDI <sup>b</sup> | Yield <sup>c</sup> | Particle               |
|-----------------------------------------------------|----------------------------------|------------------|--------------------|------------------------|
| (mL/mL)                                             | $(g \cdot mol^{-1})$             |                  | (%)                | diam <sup>d</sup> (nm) |
| 1/6                                                 | 5.1                              | 1.7              | 85.4               | 640                    |
| 1/7                                                 | 4.9                              | 1.6              | 87.3               | 630                    |
| 1/8                                                 | 4.8                              | 1.7              | 88.7               | 610                    |
| 1/9                                                 | 4.6                              | 1.7              | 89.2               | e                      |

**Table S1** Effects of the mixed solvent ( $CH_2Cl_2/n$ -heptane) ratio on copolymerization and formation of particles <sup>a</sup>.

<sup>a</sup> Copolymerization was performed under conditions: total concentration of monomers mixture, 2.5  $\times 10^{-2}$  M; [Rh], 2.5  $\times 10^{-4}$  M; at 30 °C for 3 h. <sup>b</sup> Det ermined by GPC trace and PDI was defined as  $M_w/M_n$ . <sup>c</sup> Determined gravimetrically. <sup>d</sup> Determined by SEM. <sup>e</sup> Only few regular microparticles.

| proceed time (min) | $M_{\rm n, exp} {}^{\rm b}/10^3$ | PDI <sup>b</sup> | Yield | Particle |
|--------------------|----------------------------------|------------------|-------|----------|
|                    |                                  |                  | (70)  |          |
| 5                  | 4.3                              | 1.8              | 35.3  | e        |
| 10                 | 4.4                              | 1.6              | 56.7  | e        |
| 15                 | 4.5                              | 1.7              | 63.4  | e        |
| 30                 | 4.6                              | 1.8              | 78.6  | e        |
| 45                 | 4.6                              | 1.5              | 79.9  | e        |
| 60                 | 4.8                              | 1.7              | 85.8  | 540      |
| 90                 | 4.9                              | 1.6              | 87.2  | 560      |
| 120                | 4.9                              | 1.6              | 87.3  | 630      |

Table S2 Copolymerization and growth of P<sub>55</sub> particles <sup>a</sup> with time.

<sup>a</sup> Copolymerization was performed under conditions: total concentration of monomers mixture [M],  $2.5 \times 10^{-2}$  M; [Rh],  $2.5 \times 10^{-4}$  M; CH<sub>2</sub>Cl<sub>2</sub>/*n*-heptane, 1/7 (mL/mL); at 30 °C for 2 h. <sup>b</sup> Determined by GPC trace and PDI was defined as  $M_w/M_n$ . <sup>c</sup> Determined gravimetrically. <sup>d</sup> Determined by SEM. <sup>e</sup> Only few regular particles.

Table S3 Effects of total monomer concentration on P<sub>55</sub> particles <sup>a</sup>.

| $[M]/10^{-2} (M)$ | $M_{\rm n}, \exp^{\rm b}/10^{3}$ | PDI <sup>b</sup> | Yield | Particle               |  |
|-------------------|----------------------------------|------------------|-------|------------------------|--|
|                   | $(g \cdot mol^{-1})$             |                  | ° (%) | diam <sup>d</sup> (nm) |  |
| 1.25              | 3.9                              | 1.8              | 85.4  | e                      |  |
| 2.5               | 4.9                              | 1.6              | 87.3  | 630                    |  |
| 5                 | 4.5                              | 2.2              | 70.5  | e                      |  |
| 10                | 4.4                              | 2.2              | 68.7  | e                      |  |

<sup>a</sup> Copolymerization was performed under conditions: [Rh],  $2.5 \times 10^{-4}$  M; CH<sub>2</sub>Cl<sub>2</sub>/*n*-heptane, 1/7 (mL/mL); at 30 °C for 2 h. <sup>b</sup> Determined by GPC. <sup>c</sup> Determined gravimetrically. <sup>d</sup> Determined by SEM. <sup>e</sup> Only few regular particles.

| [Rh]/10 <sup>-4</sup> (M) | $M_{\rm n},  \exp^{\rm b}/10^{3}$ | PDI <sup>b</sup> | yield <sup>c</sup> | Particle               |
|---------------------------|-----------------------------------|------------------|--------------------|------------------------|
|                           | $(g \cdot mol^{-1})$              |                  | (%)                | diam <sup>d</sup> (nm) |
| 1.25                      | 5.1                               | 1.5              | 85.4               | e                      |
| 2.5                       | 4.9                               | 1.6              | 87.3               | 630                    |
| 5                         | 3.5                               | 2.2              | 88.6               | e                      |
| 10                        | 3.3                               | 2.1              | 87.9               | e                      |

Table S4 Effects of Rh catalyst concentration on P<sub>55</sub> particles <sup>a</sup>.

<sup>a</sup> Copolymerization was performed under conditions: total concentration of monomers mixture [M],  $2.5 \times 10^{-2}$  M; CH<sub>2</sub>Cl<sub>2</sub>/*n*-heptane, 1/7 (mL/mL); at 30 °C for 2 h. <sup>b</sup> Determined by GPC. <sup>c</sup> Determined gravimetrically. <sup>d</sup> Determined by SEM. <sup>e</sup> Only few regular particles.

Table S5 Effects of feed mass ratio of the two monomers M1/M2 on copolymeric

particles <sup>a</sup>.

| Sample          | M1/M2   | $M_{\rm n},  \exp^{b}/10^3$ | PDI | Yield <sup>c</sup> | Particle               | $[\alpha]_D^f$ | $\Phi_F{}^{g}$ | $g_{ m abs}$ $^{ m h}/10^{-2}$ | $g_{\rm lum}{}^{\rm i}/10^{-2}$ |
|-----------------|---------|-----------------------------|-----|--------------------|------------------------|----------------|----------------|--------------------------------|---------------------------------|
| NO.             | (mg/mg) | $(g \cdot mol^{-1})$        | b   | (%)                | diam <sup>d</sup> (nm) | (deg)          |                |                                |                                 |
| P1              | 10:0    | 4.7                         | 1.9 | 87.9               | e                      | -1300          | _              | -1.15                          | _                               |
| P <sub>91</sub> | 9:1     | 4.7                         | 2.2 | 84.6               | 610                    | -1240          | 7.3            | -0.91                          | -1.333                          |
| P <sub>82</sub> | 8:2     | 4.7                         | 2.0 | 85.4               | e                      | -890           | 10.5           | -0.68                          | -1.239                          |
| P <sub>73</sub> | 7:3     | 4.8                         | 2.3 | 86.5               | e                      | -560           | 23.4           | -0.45                          | -1.087                          |
| P <sub>64</sub> | 6:4     | 4.7                         | 2.1 | 87.1               | e                      | -250           | 30.6           | -0.31                          | -0.970                          |
| P <sub>55</sub> | 5:5     | 4.9                         | 1.6 | 87.3               | 630                    | -120           | 39.8           | -0.23                          | -0.815                          |
| P2              | 0:10    | 4.8                         | 1.8 | 88.7               | e                      | 2              | 64.3           | _                              | _                               |

<sup>a</sup> Copolymerization was performed under conditions: total concentration of monomers mixture [M],  $2.5 \times 10^{-2}$  M; [Rh],  $2.5 \times 10^{-4}$  M; CH<sub>2</sub>Cl<sub>2</sub>/*n*-heptane, 1/7 (mL/mL); at 30 °C for 2 h. <sup>b</sup> Determined by GPC. <sup>c</sup> Determined gravimetrically. <sup>d</sup> Determined by SEM. <sup>e</sup> Only few regular particles. <sup>f</sup> Measured by polarimetry at 25 °C, c=0.1 g/dL, in CHCl<sub>3</sub>. <sup>g</sup> Absolute fluorescence quantum yield of composite film obtained using the calibrated integrating sphere system. <sup>h</sup> Determined by the CD and UV-vis spectra of composite film. <sup>i</sup> Determined by the CPL spectra of composite film.