Electronic Supplementary Information

Microfluidic synthesis of graphene oxide/ MnO_{2}-incorporated self-propelling micromotors for organic dye removal

Hoang Gia Vinh Ho ${ }^{\text {a }}$ and Pil J. Yoo ${ }^{*}$ abcd

[^0]E-mail: pjyoo@skku.edu
(a)

(b)

Fig S1. The micromotors fabrication regime with different GO concentration, (a) $12.5 \mathrm{mg} / \mathrm{mL}$ and (b) 15 $\mathrm{mg} / \mathrm{mL}$.

Fig S2. The effect of different surfactant concentration on the movement speed of the micromotors in varying fuel concentrations and sizes of the micromotor, the chosen surfactant concentration for examination were (a) $0.01 \mathrm{wt} \%$, (b) $0.05 \mathrm{wt} \%$, (c) $0.1 \mathrm{wt} \%$ and (d) $0.2 \mathrm{wt} \%$. For each displayed value, five of the quickest-moving micromotors were chosen and analyzed. (e) The speed of $200 \mu \mathrm{~m}$ micromotors in $2.5 \mathrm{wt} \%$ fuel concentration with different surfactant concentration plotted against each other.

Fig S3. UV-Vis measurements of the adsorption process of (a) Methylene Blue and (b) Brilliant Green using non-catalyst GO-imbedded stationary microbeads.

Video S1. Bubble propulsion of the micromotor in the fuel solution. The micromotor's size is $200 \mu \mathrm{~m}$, the fuel is 2.5 wt\% $\mathrm{H}_{2} \mathrm{O}_{2}$ solution with 0.1 wt\% Triton $\mathrm{X}-100$.

Video S2. The real time adsorption process of Methylene Blue by micromotors in wastewater solution. The wasterwater is $5 \mathrm{mg} / \mathrm{I}$ Methylene Blue in $2.5 \mathrm{wt} \% \mathrm{H}_{2} \mathrm{O}_{2}$ solution with $0.1 \mathrm{wt} \%$ Triton X-100.

[^0]: a. School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea. E-mail: pjyoo@skku.edu
 b. SKKU Advanced Institute of Nanoscience and Technology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
 c. SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
 d. KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon 16419,

 Republic
 of Korea

