Supporting Information for

Highly resolved and refreshable X-ray imaging from Tb³⁺ doped aluminosilicate oxyfluoride glass scintillators

SunYueZi Chen^{a,b,c}, LianJie Li^a, JunYu Chen^a, ShuJun Xu^a, WenJun Huang^a, ZhuoXing Wen^a, TingMing Jiang^{d*}, Hai Guo^{a*}

^aDepartment of Physics, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China ^bNingbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, PR China ^cUniversity of Chinese Academy of Sciences, Beijing, 100049, PR China ^dState Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, PR China

*Corresponding author:

TingMing Jiang, E-mail: jiangtingming@zju.edu.cn; Hai Guo, E-mail: <u>ghh@zjnu.cn</u>

Fig. S1(a) depicts the comparison of PL spectra of host glass and Tb³⁺ doped glass specimens. Under 274 nm UV light excitation, G-host sample merely presents the distinguished emission at 313 nm (${}^{6}P_{7/2}$ to ${}^{8}S_{7/2}$ transition of Gd³⁺). As the content of Tb³⁺ raises, the emission at 313 nm declines. The emission peaks at 485, 542, 586 and 621 nm (${}^{5}D_{4}$ to ${}^{7}F_{6,5,4,3}$ transitions of Tb³⁺) enhance first and descend afterward with increasing Tb³⁺ content. Above phenomena prove the energy transfer from Gd³⁺ to Tb³⁺.¹⁻¹⁰ The emission peaks at 379, 415 and 436 nm (${}^{5}D_{3}$ to ${}^{7}F_{6,5,4}$ transitions of Tb³⁺) diminish gradually with boosting Tb³⁺ content, which is owing to the cross relaxation (${}^{5}D_{3} + {}^{7}F_{6} \rightarrow {}^{5}D_{4} + {}^{7}F_{0}$) between Tb³⁺ ions.

As shown in Fig. S1(b) and listed in Table 2, the lifetime of ${}^{6}P_{7/2}$ of Gd³⁺ (calculated from equation S1) is shortened gradually. Energy transfer efficiency η can be calculated by equation S2,¹¹

$$\overline{\tau}_{\rm Gd} = \int t I(t) dt / \int I(t) dt \tag{S1}$$

$$\eta = 1 - \overline{\tau}_{Gd} / \tau_{host} \tag{S2}$$

where $\overline{\tau}_{Gd}$ is the average lifetime of ${}^{6}P_{7/2}$ level of Gd³⁺, τ_{host} is the average lifetime of ${}^{6}P_{7/2}$ level of Gd³⁺ in pure host (G-host specimen) without Tb³⁺ doping. As displayed in Table 2, the energy transfer efficiency is enhanced with increasing Tb³⁺ content, and the maximal energy transfer efficiency is 94.2%.

Fig. S1(a) Emission spectra of G-host and G-*x*Tb specimens excited by 274 nm; (b) decay curves of emission at 313 nm of Gd^{3+} in G-host and G-*x*Tb specimens ($\lambda_{ex} = 274$ nm).

Specimen	G-host	G-3Tb	G-5Tb	G-7Tb	G-9Tb	G-11Tb
Density (g/cm ³)	3.90	3.86	3.88	3.88	3.90	3.91

Table S1 The density of all glass specimens.

_

Reference:

- 1. Y. Wu, D. Chen, Y. Li, L. Xu, S. Wang and S. Wu, J. Lumin., 2022, 245, 118762.
- 2. Z. Wen, L. Li, W. Huang, S. Chen, L. Lei, T. Pang and H. Guo, J. Lumin., 2022, 250, 119095.
- 3. L. Teng, W. Zhang, W. Chen, J. Cao, X. Sun and H. Guo, Ceram. Int., 2020, 46, 10718-10722.
- 4. X. Sun, X. Yu, W. Wang, Y. Li, Z. Zhang and J. Zhao, J. Non-Cryst. Solids, 2013, 379, 127-130.
- 5. X. Sun, Q. Yang, P. Gao, H. Wu and P. Xie, J. Lumin., 2015, 165, 40-45.
- 6. C. Richard and B. Viana, *Light: Sci. Appl.*, 2022, **11**, 123.
- J. Ma, W. Zhu, L. Lei, D. Deng, Y. Hua, Y. M. Yang, S. Xu and P. N. Prasad, ACS Appl. Mater. Interfaces, 2021, 13, 44596-44603.
- 8. T. Han, X. Sun, X. Lai, J. Yu, L. Xia, H. Guo and X. Ye, Radiat. Phys. Chem., 2021, 189, 109734.
- W. Chewpraditkul, Q. Sheng, D. Chen, A. Beitlerova and M. Nikl, *Phys. Status. Solidi. A*, 2012, 209, 2578-2582.
- 10. W. Chen, J. Cao, F. Hu, R. Wei, L. Chen, X. Sun and H. Guo, Opt. Mater. Express, 2017, 8, 41-49.
- 11. S. Chen, W. Zhang, L. Teng, J. Chen, X. Sun, H. Guo and X. Qiao, *J. Eur. Ceram. Soc.*, 2021, **41**, 6722-6728.