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1 Experimental Section
1.1 Materials

All chemicals and solvents were purchased in reagent grade from Aldrich, ACROS, and TCI,
and, except Pd(PPh;), which was obtained from Strem Chemical. Tetrahydrofuran (THF),
toluene, were distilled over Na/benzophenone; all reagents were used as received. Monomer
M2 was obtained from Derthon Shenzen, China. Compound 5, monomers M1 and M3, were
synthesized using a similar or slightly modified process from previously reported works.!

1.2 Measurements and Characterization

'H and '*C NMR spectra were recorded from CDCl; solutions using a Bruker 400 MHz
spectrometer; chemical shifts are reported as 6 values (7.26 ppm) relative to an internal
tetramethylsilane (TMS) standard. UV—Vis absorption spectra were recorded using a Jasco V-
670 absorption spectrometer from dilute solutions in chlorobenzene or from solid films that
had been spin-coated onto glass substrate from dilute chlorobenzene solutions (5 mg mL™).
The electrochemical measurements were carried out in a deoxygenated solution of tetra-n-
butylammoniumhexafluorophosphate (0.1 M) in acetonitrile with a computer-controlled
electrochemical workstation. A glassy carbon electrode, a Pt wire, and an Ag/AgCl electrode
were used as the working, counter, and reference electrodes, respectively. The corresponding
energy levels of the highest occupied molecular orbital (HOMO) and lowest unoccupied
molecular orbital (LUMO) were calculated from the experimental values of Eqy/onset@nd Ereg/onset
for the solid films BDD-BT, BDD-FBT, and BDD-2FBT, formed by drop-casting films at a
similar thickness from chlorobenzene solutions (ca. 5 mg mL™!). The onset potentials were
determined from the intersections of two tangents drawn at the rising currents and background

currents of the CV measurements. The XRD spectra as recorded by using BRUKER (D8



ADVANCE) instrument having Cu X-ray tube (2.2 KW) with a maximum voltage 40 kV and

power 40 mA having the 20 values from 3° to 30°.

The ground electronic states of the monomer, dimer, and trimer of the non-fluorinated and
mono- and di-substituted BDD-BT systems were optimized using the density functional theory
(DFT) method with B3LYP functional in chlorobenzene solvent under the polarized continuum
model (PCM) of implicit solvation. The 6-31G(d,p)>? basis set was used for C, H, N, and O
atoms, while the 6-31G(2df,p)* basis set was used as the basis for the fluorine atom. The
vibrational frequencies obtained from the Hessian calculations at the optimized geometries
were all positive, confirming the absence of any imaginary frequency and a stable acceptor-
acceptor system. The optimized structures were subjected to time-dependent density functional
theory (TD-DFT) calculations at the aforementioned theoretical level in order to assess their
vertical excitations. In the present work, all electronic structure calculations, and the highest
occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) analysis
were carried out using the Gaussianl6 software package.®> The natural transition orbital (NTO)

analysis was done by using the Multiwfn software.

2. Devices fabrication and characterizations

For bottom gate-bottom contact (BG-BC) devices, gold (Au) and titanium (Ti) layers were
thermally evaporated onto a SiO, (300 nm)/p**-Si substrate using a shadow mask to form the
source and drain contacts with 30 nm in thickness. The channel length (L) and channel width
(W) were 5 and 1400 pm, respectively. The substrate was thoroughly cleaned by placing it in
piranha solution for about 2 min. After removing the piranha solution and rinsing the substrate

with deionized water three times, the substrate was sonicated once with deionized water and



twice with isopropanol (IPA) for 4 minutes each time. After drying the substrate with nitrogen,
the substrate was treated with UV-ozone (UV/O;) for 15 min, and then baked at 90 °C for 30
min at 0.1 Pa in a vacuum oven. OTS treatment was performed by placing the cleaned substrate
in OTS vapor for 180 min at 120 °C in a vacuum oven. The OTS-modified substrate was
ultrasonically cleaned with n-hexane, chloroform, and IPA for 4 minutes, respectively, and
then blown dry with nitrogen. BDD-BT, BDD-FBT, and BDD-2FBT solutions (in
chlorobenzene at 5 mg/ml) were prepared. The polymer solution was spin-coated on the
cleaned substrate at 2500 rpm for 60 s, then the samples were annealed at 160 °C on a hotplate
for 15 min. For After cooling down the samples to room temperature, we have conducted the
following test.

For top gate-bottom contact (TG-BC) devices, the substrates undergo the same processing
methods as the bottom gate devices and were surface-modified with OTS. BDD-BT, BDD-
FBT, and BDD-2FBT dissolved in chlorobenzene at 5 mg/ml solution and
polymethylmethacrylate (PMMA) in ethyl acetate at 60 mg/ml solution were prepared. The
BDD-BT, BDD-FBT, and BDD-2FBT polymer solution was spin-coated on the processed
substrate at 2500 rpm for 60 s, then annealed at 160 °C on a hotplate for 15 min. After cooling
down to room temperature, PMMA solution was spin-coated on the polymer layer at 2000 rpm
for 60 s. Then baked at 80 °C for 90 min at 0.1 Pa in a vacuum oven. 80 nm aluminum (Al)
layer was thermally evaporated onto the PMMA layer to form the gate electrode.

2.1 Device testing

The devices were characterized using Keithley 4200-SCS semiconductor parameter analyzer
in the nitrogen environment. The threshold voltage (Vy,) and field-effect mobility (p) in the

saturation region were determined from



Ips = (W /2L) Cipt (Vgs-Vin)?
where Ipg is the current density between drain and source, Vg is the voltage between gate and
source, W and L are the channel width and length, respectively, and C; is the capacitance of the

insulator.
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Scheme 1, reagents and conditions: (1) THF, sulphur powder, n-BuLi, -78 °C; (i1) THF, sulphur
powder, n-BuLi, -78 °C, 50 °C, 2hr, overnight room temperature; (iii) acetic acid, Br,, 50 °C;
(ii1) Oxalyl chloride, methylene chloride, ambient temperature; (iv) AlCl;, methylene chloride,
ambient temperature, then reflux for several hours; (v) DCM, AICl;, 0 °C; (vi) THF, n-BuLi, -
78 °C, 2,2,6,6-tetramethylpiperidine (TMP); (vii) chlorobenzene using Pd(PPhs),, 125°C,
overnight.

2-((2-octyldodecyl)thio)thiophene (1)

Under N, n-butyllithium (2.5 M in hexane, 26.5 mL, 66.5 mmol) was added to a solution of
thiophene (5 mL, 126.57 mmol) in dry THF (100 mL) at 0 °C. The mixture had been stirred at
the same temperature for 1 h, and sulfur powder (4.45 g, 139.23 mmol) was added in one
portion and then the suspension was stirred for another 2h. Subsequently, 9-
(bromomethyl)nonadecane (25.2 g, 69.6 mmol) was added dropwise, and then the mixture was

6



stirred overnight at room temperature. The reaction was quenched through the addition of ice-
cooled saturated aqueous NH4CI (50 mL). The organic phase was extracted into diethyl ether,
washed with water, and dried (MgSQ,). The solvent was evaporated under reduced pressure
and the residue was purified through distillation to afford a colorless oil (17.1 g, 68%). 'H
NMR (400 MHz, CDCl3), 8 (ppm): 7.30-7.28 (dd, 1H), 7.08-7.07 (dd, 1H), 6.95-6.93 (m, 1H),
2.80-2.79 (d, J=2H), 1.60-1.54 (m, 1H), 1.47-1.25 (m, 32H), 0.90-0.86 (t, J= 8.6 Hz 6H). 13C
NMR (100 MHz, CDCls): 6:138.57, 132.54, 43.93, 37.65, 32.80, 31.95, 31.93, 29.92, 29.70,

29.68, 29.65, 29.60, 29.39, 29.37, 26.46, 22.72,14.15.
2,5-bis((2-octyldodecyl)thio)thiophene (2)

In a flame-dried clean 250 mL round bottom flask, n-butyllithium (2.5 M in hexane, 18.9 mmol,
7.56 mL) was added dropwise into the solution of (1) (5.0 g, 12.6 mmol) in dry THF (50 ml)
at 0 °C under N, for 1 hr. The mixture was stirred at 50 °C for 2 h, then cooled to -78 °C and
keep for a few minutes. Subsequently, sulfur powder (0.48 g, 15.0 mmol) was added to the
mixture and maintain the same temperature for 1 h, followed by the addition of 9-
(bromomethyl)nonadecane (35.0 g, 25.1 mmol) was added and the mixture was stirred at 50
°C for 2 h and then room temperature for overnight. The mixture was extracted by ether, then
dried over anhydrous MgSO,, and evaporated under reduced pressure, and then the crude
product was purified by column chromatography on silica gel (hexane) to obtain 2 as a yellow
viscous oil (7.5 g, yield 83%). 'H NMR (400 MHz, CDCl;): 6 6.90 (s, 1H), 2.79 (d, /= 8.4 Hz,
4H), 1.60-1.55 (m, 2H), 1.39-1.25 (m, 64H), 0.89-0.86 (t, /= 8.8, 12H). 3C NMR (100 MHz,
CDCI3): 6:138.57,132.54,43.93,37.65,32.80,31.95,31.93,29.92,29.70, 29.68, 29.65, 29.60,

29.39,29.37, 26.46, 22.72,14.15.

2,5-Dibromothiophene-3,4-dicarboxylic acid (3)
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Br; (9.2) was added dropwise to a solution of thiophene-3,4-dicarboxylic acid (5 g, 29.1 mmol)
and glacial acetic acid (50 mL) in the 250 ml round-bottomed flask. The mixture was stirred
overnight at room temperature (RT). A saturated sodium bisulfate solution (about 750 gm was
used) was added until the reddish color became yellowish. The precipitate was filtered and
washed with each 100 mL of water and hexane to get an off-white solid and 5.8 g (yield: 61%).

The product could use for the next step without any further purification.

2,5-Dibromothiophene-3,4-dicarboxylic acid chloride (4)

Under N, to a solution of compound 3 (1 gm, 3.0 mmol) in dry dichloromethane DCM (10
mL) at 0 °C, oxalyl chloride (2.0 mL) with DMF (1 drop) was slowly added. The mixture was
stirred 30 min at 0 °C and then stirred at room temperature for overnight. The reaction mixture
was evaporated by a rotatory evaporator under reduced pressure and under air protection to
remove the solvent and other volatiles and further dried by the vacuum pump. The product was

used for the next step without any further purification.

1,3-dibromo-5,7-bis((2-octyldodecyl)thio)benzo[1,2-c:4,5-c'|dithiophene-4,8-dione (5):

To a stirred solution of the compound 4 (1.0 g, 2.5 mmol) and 2,5-bis((2-
octyldodecyl)thio)thiophene (2) (1.6 g, 2.25 mmol) in dry 1,2-dichloroethane (20 ml), AlCl;
(2.18 g, 10.0 mmol) was added in small portions at 0 °C. The mixture was allowed to stir at 0
° C for 30 min and then at room temperature for 6 h. The mixture was poured into the ice with
1 M hydrochloric acid (20 ml) and then extracted with DCM. The organic layer was collected
then dried over anhydrous MgSO, and evaporated under reduced pressure. The crude product
was purified by column chromatography on silica gel (hexane: DCM = 4:1) to obtain 5 as a

pale yellow solid (0.72 g, 36%).



"H NMR (400 MHz, CDCl5) 6 3.06 (d, J = 6 Hz, 4H), 1.78-1.81 (m, 2H), 1.66 (m, 1H), 1.31-
1.57 (m, 42 H), 1.31-1.51(m, 22), 0.91-0.94 (m = 12H). 3C NMR (100 MHz, CDCl;) 8 173.22,
150.88, 134.27, 130.91, 119.64, 133.45, 133.26, 124.64, 120.90, 120.49, 41.46, 34.88, 32.31,
28.75, 25.53, 22.90, 14.08, 10.76. MALDI-TOF Calculated m/z =1000.3564; found m/z =
1000.3550. Anal. calculated for CsgHg,Br,0,S4, C, 59.86; H, 8.24; O, 3.19; S, 12.78. Found:

C, 59.81; H, 8.20.

4,7-bis(5-(trimethylstannyl)thiophen-2-yl)benzo[c][1,2,5]thiadiazole (M1):
Monomer M1 was synthesized from previous reported procedures with 70 % yield.!

'"H NMR (400 MHz, CDCl3) &: 8.17 (d, J = 3.6Hz, 2H), 7.86 (s, 2H), 7.30 (d, J = 3.6Hz, 2H),
0.44 (s, 18H). 13C NMR (100 MHz, CDCl;) 8: 152.48, 145.07, 140.27, 136.12, 128.40, 125.9,
125.8, -8.22. Anal. calcd for C,0H,,N,»S5Sn,. C, 38.37; H, 3.86; N, 4.47; S, 15.37. Found: C,
38.10; H, 3.78; N, 4.41.

5,6-difluoro-4,7-bis(5-(trimethylstannyl)thiophen-2-yl)benzo[c][1,2,5]thiadiazole (M3):
Monomer M3 was synthesized from previous reported procedures with 70 % yield.!

"H NMR (400MHz, CDCl;) 6: 8.31 (d, 2H, J=3.6 Hz), 7.33 (d, 2H, J= 3.6 Hz), 0.45 (s, 18H).
BCNMR (100 MHz, CDCl;) 8: 150.88, 150.67, 148.97, 148.30, 142.59, 137.6, 131.43, 135.42,
111.63, -8.09. Anal. calcd for C,0H,,F,N»S5Sn,: C, 36.29; H, 3.35; N, 4.23; S, 14.53. Found C,
36.50; H, 3.27; N, 4.21.

General procedure for the synthesis of BDD-BT polymers (BDD-BT, BDD-FBT, and

BDD-2FBT).

To a 20 ml clean and dry microwave vial were charged with compound 5 (0.150 mmol),
monomer M1-M3 (0.150 mmol), and Pd(PPh;), (0.010 g, 0.01 mmol). The reaction was applied

in three cycles vaccum and purge N, for and then added chlorobenzene (5 mL) followed by



125 °C for overnight. After cooling to room temperature, the reaction mixture was dropwise
into a mixture of hydrochloric acid (1IN, 10 mL) and methanol (200 mL). The polymer
precipitate was by filtered through a thimble and purified with Soxhlet extraction using
methanol 24 hr, acetone, hexane, dichloromethane, and chlorobenzene. The chlorobenzene
soluble fraction was concentrated and reprecipitated into methanol, filtered, and dried under a

vacuum to achieve the desired polymers as a dark purple solid.

BDD-BT: Using compound 5 = 150.4 mg and monomer M1 =93.9 mg, Yield = 131 mg, 74%;
GPC: Mn = 38.0 kDa, B =1.8; UV-Vis: Apax = 629 nm (dilute chlorobenzene solution), Ay =

628, 684 nm (solid film).

BDD-FBT: Using compound 5 = 150.4 mg and monomer M2 = 96.6 mg, Yield 121 mg,67%;
GPC: Mn =35 kDa, B = 2.1; UV-Vis: Apax = 596 nm (dilute chlorobenzene solution), Ayax =

612, 671 nm (solid film).

BDD-2FBT: Using compound 5= 150.4 mg and monomer M3 = 99.3 mg, Yield 138 mg; 76%;
GPC: Mn =30 kDa, b =2.5; UV-Vis: Ay.x = 608, 662 nm (dilute chlorobenzene solution), Apax

=605, 659 nm (solid film).
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Figure S1. TGA thermograms of copolymers BDD-DPPOD, BDD-DPPEH, BDDTH-

DPPOD, and BDDTH-DPPEH under nitrogen flow at 10 °C min-!.
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Figure S2. Dihedral angles of the optimized geometries of BDD-BT (black), BDD-FBT (red),
and BDD-2FBT (blue) trimers. The dihedral angles between the planes of BDD and thiophene
(intra-chain), BT and thiophene, and BDD-thiophene (inter-chain) are defined by ®,, ®@,, and
@3, respectively. The BT-moiety as well as its two adjacent thiophene units remain planar in
each monomer of the trimeric structure, while the BDD-moiety does not exhibit planarity.
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Figure S3. The HOMO-LUMO energy diagram of the (a) monomeric and (b) dimeric units of
BDD-BT, BDD-FBT, and BDD-2FBT moieties. The optimized structures as well as the
calculated HOMO, LUMO energy levels, and the HOMO-LUMO energy gaps (in the units of

eV) are shown in the figure.
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Figure S5. The density of states (DOS) is plotted against the orbital energies (eV) of the
monomer (upper panel), dimer (middle panel), and trimer (lower panel) of BDD-2FBT moiety.

The vertical dashed line represents the HOMO energy level. The increased density of states
of the trimer near the HOMO and LUMO energy levels of BDD-2FBT is indicative of the
formation of a band structure.
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Table S1. The HOMO-LUMO gap (eV) for monomer, dimer, and trimer of BDD-BT and its

fluorine substituted forms.

Polymers Monomer (eV) Dimer Trimer

BDD-BT 2.48 2.08 1.86
BDD-FBT 2.44 2.09 1.99
BDD-2FBT 2.49 2.09 2.02

Table S2. The absorption maxima (A.x) corresponds to the characteristic UV-Vis absorption
calculated from the TD-DFT method for monomer, dimer, and trimer of BDD-BT and its

fluorine substituted forms.

Polymers Monomer (nm) Dimer Trimer
BDD-BT 485-368 nm 600-470 nm 616-571 nm
BDD-FBT 491-436 nm 597-466 nm 603-499 nm
BDD-2FBT 486-438 nm 608-465 nm 609-510 nm
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Table S3. Parameters of field-effect transistor devices based on copolymers BDD-BT, BDD-
FBT, and BDD-2FBT.

Material Method? Mobility (cm?v-ls)P Vo (V) On/Off Ratio
N- P- N- P-

BDD-BT As cast 7.3 x103 1.57 x10°3 20.12 70.23 102
80 °C 1.43x102 5.57 x10° 15.51 6.99 102

120 °C 2.53x102 2.40x107 21.10 21.95 103

160 °C 2.40x102 3.06 x10°5 3.85 39.77 104

200 °C 1.8 x102 - 14.65 - 10°

BDD-FBT As cast 2.39x1073 3.05x10° 10.23 -17.23 103
80 °C 6.27 x1073 0.1x1073 16.46 -12.86 103

120 °C 1.20 x102 0.13x10°3 11.7 -20.1 103

160 °C 2.66 x102 - 18.09 - 104

200 °C 1.72 x102 - 15.84 - 10°

BDD-2FBT As cast 1.26 x1073 - 5.24 - 10°
80 °C 2.60 x1072 - 10.70 - 107

120 °C 5.78 x1072 - 15.17 - 107

160 °C 8.38 x102 9.91 - 109

200 °C 5.20x1072 - 10.89 - 10°

aMethodology used in the film fabrication, as-cast or annealed at 120 or 160 or 180 or 200 °C
for 15 min. "Determined from the following equation in the saturation region; Ips = (W /2L)
Cik (Vgs-Vin)?
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gure S13. H!' and C'3 Spectra of Monomer M3.
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