Supporting Information

Optical resolution of pseudo-*para*-disubstituted [2.2]paracyclophane: chiral building block for optically active helicene-stacked molecules emitting circularly polarized luminescence

Asuka Yanagawa, Motoki Tsuchiya, Ryo Inoue and Yasuhiro Morisaki*

Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences,

Kwansei Gakuin University,

1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan

E-mail: ymo@kwansei.ac.jp (Y.M.)

General

¹H and ¹³C spectra were recorded on a JEOL JNM ECZ-500R instrument at 500 and 125 MHz, respectively. Samples were analyzed in CDCl₃, and the chemical shift values were expressed relative to Me₄Si as an internal standard. Analytical thin layer chromatography (TLC) was performed with silica gel 60 Merck F₂₅₄ plates. Column chromatography was performed with Wakogel C-300 SiO₂. Flush column chromatography and recyclable preparative high-performance liquid chromatography (HPLC) were carried out on a YMC LC Forte/R or Japan Analytical Industry LaboACE LC-5060. Diastereomer ratio (dr) was confirmed by a HPLC (TOSOH UV-8020) equipped with a Daicel Chiralpak[®] IA column (0.46 cm × 25 cm, solvent flow rate 0.5 mL/min). High-resolution mass (HRMS) spectra were obtained on a Bruker Daltonics microTOF II for atmospheric pressure chemical ionization (APCI) or electrospray ionization (ESI). UV-vis spectra were recorded on a JASCO Vspectrophotometer, and samples were analyzed in CHCl₃ at room temperature. 730 Photoluminescence (PL) spectra were recorded on a JASCO FP-8500 spectrofluorometer, and samples were analyzed in CHCl₃ at room temperature. Absolute PL quantum efficiency was calculated on a JASCO FP8500 with an ILF-835 integrating sphere. Circular dichroism (CD) spectra were recorded on a JASCO J-1500 spectropolarimeter with CHCl₃ as a solvent at room temperature; two scans were accumulated. Circularly polarized luminescence (CPL) spectra were recorded on a JASCO CPL-300 with CHCl₃ as a solvent at room temperature. All samples for CPL were excited around 290 nm, and five scans were accumulated. Specific rotations ($[\alpha]^{t}_{D}$) were measured with a HORIBA SEPA-500 polarimeter.

All reactions were carried out under N₂ atmosphere.

Materials

Commercially available compounds used without purification:

(1S,4R)-Camphanoyl chloride (1S,4R)-3, Tf₂O, styrene 6, 2-vinylnaphthalene 8

n-BuLi (1.55 M in hexane), B(OMe)₃

NaOH, KOH, 30% H₂O₂, I₂

Pd(OAc)₂, Pd₂(dba)₃

P(o-tol)₃, 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (S-Phos)

Et₂O, CH₂Cl₂, EtOH

Pyridine (dehydrated), toluene (dehydrated), THF (dehydrated), DMF (dehydrated)

Et₃N was purchased and distilled over KOH under N₂.

Compounds prepared as described in the literature:

Pseudo-para-dibromo[2.2]paracyclophane 1:

Reich, H. J.; Cram, D. J. J. Am. Chem. Soc. 1969, 91, 3527-3533.

 (S_p) - and (R_p) -11:

Tsuchiya, M.; Maeda, H.; Inoue, R.; Morisaki, Y. Chem. Commun. 2021, 57, 9256-9259.

X-ray structure determination

Crystals suitable for X-ray diffraction studies were analyzed using a Rigaku MicroMax-007HFM MoKa rotating anode generator equipped with VariMax optics, an AFC1 goniometer, and Saturn 724+ detector. The reflection data for them was integrated, scaled and averaged using Rigaku CrysAlis^{PRO}. The structures were solved by a direct method (SHELXT) and refined using a full-matrix least-squares method on F2 for all reflections (SHELXL-2018/3). The calculations were performed on Olex2 program package. Crystallographic data are given in Tables S1–S5. Deposition numbers 2214406 ((S_p ,1S,4R)-4), 2214407 ((R_p ,1S,4R)-4), 2214408 ((S_p)-9), 2214409 ((R_p)-10), and 2214410 ((R_p)-14) contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.

Computational methods

DFT and TD-DFT calculations^{1–5} were carried out by using the Gaussian 16 program package⁶, with the 6-31G(d)^{7–9} basis set for C and H atoms. Optimized geometries and their molecular orbitals in the ground and S₁ states were determined by DFT and TD-DFT calculations with the CAM-B3LYP¹⁰ functional and integral equation formalism polarizable continuum model (IEF-PCM)¹¹ method for solvation effect. Cartesian coordinates of all optimized structures are given in Tables S8–S11. The energy levels, electronic configurations, CD, and CPL properties in the singlet excited states were estimated from TD-DFT calculations with the same level of theory.

1. M. E. Casida, C. Jamorski, K. C. Casida, D. R. Salahub, *J. Chem. Phys.* **1998**, *108*, 4439–4449.

4. C. Adamo, D. Jacquemin, *Chem. Soc. Rev.* **2013**, *42*, 845–856.

C. Adamo, T. Le Bahers, M. Savarese, L. Wilbraham, G. García, R. Fukuda, M. Ehara, N. Rega, I. Ciofini, *Coord. Chem. Rev.* 2015, *304–305*, 166–178.

6. Gaussian 16, Revision B.01, M. J. Frisch, et al., Gaussian, Inc., Wallingford CT, 2016.

^{2.} R. E. Stratmann, G. E. Scuseria, M. J. Frisch, J. Chem. Phys. 1998, 109, 8218–8224.

^{3.} R. Bauernschmitt, R. Ahlrichs, *Chem. Phys. Lett.* **1996**, 256, 454–464.

7. M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, *J. Chem. Phys.* **1982**, *77*, 3654–3665.

8. P. C. Hariharan, J. A. Pople, *Theor. Chim. Acta* **1973**, *28*, 213–222.

9. T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. V. R. Schleyer, *J. Comput. Chem.* **1983**, *4*, 294–0.

10. T. Yanai, D. Tew, N. Handy, Chem. Phys. Lett. 2004, 393, 51-57.

11. M. T. Cancès, B. Mennucci, J. Tomasi, J. Chem. Phys. 1997, 107, 3032–3041.

Synthesis of rac-2

A solution of *n*-BuLi (1.55 M in hexane, 11.3 mL, 17.5 mmol) was slowly added to a solution of **1** (4.94 g, 13.5 mmol) in Et₂O (21 mL) at 0 °C. After 1 h, B(OMe)₃ (3.0 mL, 26.8 mmol) was added, and then the mixture was warmed to room temperature. After 1 h, aqueous NaOH (1.0 M, 8.7 mL, 8.7 mmol) and aqueous H₂O₂ (30%, 5.7 mL, 55.9 mmol) were added, and the mixture was stirred for 1 h at room temperature. After the saturated aqueous NaHCO₃ solution was added to the reaction mixture, the organic layer was extracted with CH₂Cl₂ three times. The combined organic layer was washed with brine and dried over MgSO₄. MgSO₄ was removed by filtration, and the solvent was evaporated. The residue was purified by column chromatography on SiO₂ (CHCl₃ as an eluent) to afford *rac*-**2** (2.89 g, 9.5 mmol, 71%) as a pale yellow crystal.

 $R_{\rm f} = 0.35$ (CHCl₃ as an eluent).

¹H and ¹³C NMR spectra were matched with the literature's data.

Delcourt, M.-L.; Reynaud, C.; Turcaud, S.; Favereau, L.; Crassous, J.; Micouin, L.; Benedetti, E. J. Org. Chem. 2019, 84, 888–899. Optical resolution: synthesis of $(S_P, 1S, 4R)$ - and $(R_P, 1S, 4R)$ -4

A mixture of *rac*-2 (3.67 g, 12.1 mmol) and (1*S*,4*R*)-camphanoyl chloride (5.25 g, 24.2 mmol) was placed in a round-bottom flask equipped with a magnetic stirring bar. After degassing the reaction mixture several times, dry pyridine (101 mL) was added to the mixture at 0 °C, and the reaction was carried out at room temperature for 12 h with stirring. After the reaction mixture was cooled to 0 °C, 6 M HCl was added, and organic species were extracted with CH_2Cl_2 three times. The combined organic layer was washed with aqueous NaHCO₃, and brine. The organic layer was dried over MgSO₄. MgSO₄ was removed, and the solvent was evaporated. The residue was separated by SiO₂ column chromatography (CHCl₃/EtOAc = 1000/2.5 v/v as an eluent) to afford (*S*_P,1*S*,4*R*)-4 (*R*_f= 0.38) and (*R*_P,1*S*,4*R*)-4 (*R*_f = 0.28) as white powders. Each diastereomer was purified by recrystallization from CHCl₃/MeOH to afford (*S*_P,1*S*,4*R*)-4 (2.17 g, 4.5 mmol, 37%) and (*R*_P,1*S*,4*R*)-4 (2.20 g, 4.6 mmol, 38%).

(*R*_P,1*S*,4*R*)-4: ¹H NMR (CDCl₃, 500 MHz) δ 1.15 (s, 3H), 1.18 (s, 3H), 1.21 (s, 3H), 1.77–1.84 (m, 1H), 1.99–2.06 (m, 1H), 2.19–2.26 (m, 1H), 2.56–2.63 (m, 1H), 2.72–2.86 (m, 2H), 2.93–3.03 (m, 2H), 3.07–3.21 (m, 3H), 3.46–3.53 (m, 1H), 6.04 (d, *J* = 1.7 Hz, 1H), 6.42 (d, *J* = 8.0 Hz, 1H), 6.48 (d, *J* = 1.7 Hz, 1H), 6.52 (d, *J* = 8.0 Hz, 1H), 6.94 (dd, *J* = 1.7, 1.7 Hz, 1H), 7.12 (dd, *J* = 1.7, 1.7 Hz, 1H) ppm; ¹³C{¹H} NMR (CDCl₃, 125 MHz) δ 9.8, 16.8, 17.0, 28.9, 30.9, 31.1, 32.7, 33.5, 35.3, 54.6, 55.0, 90.9, 126.7, 127.7, 127.8, 127.8, 129.1, 130.4, 134.1, 134.1, 134.4, 137.5, 138.6, 141.3, 148.5, 165.6, 178.3 ppm. HRMS (ESI+) calcd for C₂₆H₂₇BrO₄+Na⁺: 505.0985, found 505.0987. [α]²⁵_D = -55.28 (*c* 0.20, CHCl₃).

(S_P,1S,4R)-4: ¹H NMR (CDCl₃, 500 MHz) δ 1.17 (s, 3H), 1.20 (s, 3H), 1.21 (s, 3H), 1.79–1.86 (m,

1H), 2.00–2.08 (m, 1H), 2.23–2.31 (m, 1H), 2.56–2.64 (m, 1H), 2.71–2.87 (m, 2H), 2.93–3.22 (m, 5H), 3.46–3.53 (m, 1H), 6.07 (d, J = 1.7 Hz, 1H), 6.45 (d, J = 8.0 Hz, 1H), 6.48 (d, J = 1.7 Hz, 1H), 6.52 (d, J = 8.0 Hz, 1H), 6.94 (dd, J = 1.7, 1.7 Hz, 1H), 7.12 (dd, J = 1.7, 1.7 Hz, 1H) ppm; ¹³C{¹H} NMR (CDCl₃, 125 MHz) $\delta = 9.8$, 16.9, 16.9, 29.0, 31.1, 31.2, 32.7, 33.5, 35.3, 54.5, 55.0, 90.9, 126.8, 127.7, 127.8, 129.1, 130.4, 134.1, 134.4, 137.5, 138.6, 141.2, 141.3, 148.5, 165.5, 178.1 ppm. HRMS (ESI+) calcd for C₂₆H₂₇BrO₄+Na⁺: 505.0985, found 505.0969. [α]²⁵_D = +55.48 (*c* 0.20, CHCl₃).

Colum: Chiralpak[®] IA, 0.46 cm \times 25 cm. Eluent: hexane/THF = 8/2 v/v. Flow rate: 0.5 mL/min.

Fig. S1. Chromatograms of $(S_p, 1S, 4R)$ -4, $(R_p, 1S, 4R)$ -4, and diastereomers.

(B)

(A)

Fig. S2. (A) ¹H NMR spectrum and (B) ¹³C{¹H} NMR spectrum of $(S_p, 1S, 4R)$ -4 in CDCl₃.

Fig. S3. Mass spectra of $(S_p, 1S, 4R)$ -4. Upper and lower show observed and calculated spectra, respectively.

(B)

Fig. S4. (A) ¹H NMR spectrum and (B) ¹³C{¹H} NMR spectrum of $(R_p, 1S, 4R)$ -4 in CDCl₃.

Fig. S5. Mass spectra of $(R_p, 1S, 4R)$ -4. Upper and lower show observed and calculated spectra, respectively.

Fig. S6. ORTEP drawings of $(S_p, 1S, 4R)$ -4 (CCDC-2214406). Thermal ellipsoids are drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.

J 0 1	
Formula	C ₂₆ H ₂₇ BrO ₄
Formula weight	483.38
Temperature (K)	150
Crystal color, habit	colourless, plate
Crystal size, mm	0.3 imes 0.3 imes 0.05
Crystal system	monoclinic
Space group	<i>P</i> 2 ₁ (#4)
<i>a</i> , Å	7.4207(2)
<i>b</i> , Å	10.8719(2)
<i>c</i> , Å	13.8261(4)
a, deg	90
β , deg	105.401(3)
γ, deg	90
<i>V</i> , Å ³	1075.39(5)
Z value	2
$D_{ m calcd}, { m g~cm^{-3}}$	1.493
μ (MoK α), cm ⁻¹	19.43
<i>F</i> (000)	500
$2\theta_{\rm max}$, deg	62.322
No. of reflections measured	7744
No. of observed reflections	4450
No. of variables	283
$R_1 (\mathbf{I} > 2\sigma(\mathbf{I}))^{[\mathbf{a}]}$	0.0368(4337)
wR ₂ (all reflns) ^[b]	0.1049(4450)
Goodness of fit	1.078
Flack Parameter	0.008(9)
$\begin{bmatrix} c \end{bmatrix} P_{1} = \sum (E E) / \sum (E) $	$\mathbf{w} \mathbf{P}_{2} = [\Sigma[\mathbf{w}(E^{2} E^{2})^{2}] / \Sigma \mathbf{w}(E^{2})^{2}]^{1/2}$

Table S1. Crystallographic data for $(S_p, 1S, 4R)$ -4.

[a] $R_1 = \Sigma(|F_o| - |F_c|) / \Sigma(|F_o|)$. [b] w $R_2 = [\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma w(F_o^2)^2]^{1/2}$. Recrystallization solvent: chloroform / methanol

Fig. S7. ORTEP drawings of $(R_p, 1S, 4R)$ -4 (CCDC-2214407). Thermal ellipsoids are drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.

5 01	
Formula	C ₂₆ H ₂₇ BrO ₄
Formula weight	483.38
Temperature (K)	150
Crystal color, habit	colourless, plate
Crystal size, mm	0.4 imes 0.4 imes 0.1
Crystal system	monoclinic
Space group	<i>P</i> 2 ₁ (#4)
<i>a</i> , Å	7.4466(3)
<i>b</i> , Å	10.9055(7)
<i>c</i> , Å	13.5554(6)
a, deg	90
β , deg	99.584(4)
γ, deg	90
<i>V</i> , Å ³	1085.45(10)
Z value	2
$D_{ m calcd}, { m g~cm^{-3}}$	1.479
μ (MoK α), cm ⁻¹	19.25
<i>F</i> (000)	500
$2\theta_{\rm max}$, deg	62.188
No. of reflections measured	5212
No. of observed reflections	4724
No. of variables	283
$R_1 (\mathbf{I} > 2\sigma(\mathbf{I}))^{[\mathbf{a}]}$	0.0577(4560)
wR ₂ (all reflns) ^[b]	0.1589 (4724)
Goodness of fit	1.067
Flack Parameter	-0.005(12)
$[a] R_1 = \sum (F_2 - F_2) / \sum (F_2) $ [b]	$wR_2 = [\Sigma[w(F_2^2 - F_2^2)^2] / \Sigma w(F_2^2)^2]^{1/2}$

Table S2. Crystallographic data for $(R_p, 1S, 4R)$ -4.

[a] $R_1 = \Sigma(|F_o| - |F_c|) / \Sigma(|F_o|)$. [b] w $R_2 = [\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma w(F_o^2)^2]^{1/2}$. Recrystallization solvent : chloroform / methanol Synthesis of (R_P) -5

 $(R_{\rm P}, 1S, 4R)$ -4 (2.00 g, 4.1 mmol), EtOH (116 mL) and CH₂Cl₂ (72 mL) was placed in a roundbottom flask equipped with a magnetic stirring bar. After degassing the reaction mixture several times, an aqueous solution of KOH (2.9 g) was added to the mixture. After stirring for 12 h, 6 M HCl (16 mL) was added to the reaction mixture. The organic layer was separated and extracted with CH₂Cl₂ three timers. The combined organic layer was washed with aqueous NaHCO₃ and brine, and then dried over MgSO₄. MgSO₄ was removed by filtration, and the solvent was evaporated. The solid of (S_p)-2 was used for the next reaction without further purification.

To a solution of (R_p) -2 in CH₂Cl₂ (44 mL) were added pyridine (4.4 mL, 54.6 mmol) and Tf₂O (2.2 mL, 13.1 mmol) at 0 °C. After being stirred for 2 h at room temperature, 6 M HCl was added to the reaction mixture. The organic layer was separated and extracted with CH₂Cl₂ three timers. The combined organic layer was washed with aqueous NaHCO₃ and brine, and then dried over MgSO₄. MgSO₄ was removed by filtration, and the solvent was evaporated. The residue was purified by column chromatography on SiO₂ (AcOEt/hexane = 2/1 v/v as an eluent) to afford (R_p)-5 (1.75 g, 4.0 mmol, 97%) as a yellow liquid.

 $R_{\rm f} = 0.88$ (AcOEt / hexane = 2/1 v/v as an eluent). ¹H NMR (CDCl₃, 500 MHz) δ 2.81–2.90 (m, 2H), 2.95–3.07 (m, 2H), 3.10–3.24 (m, 2H), 3.38–3.45 (m, 1H), 3.49–3.56 (m, 1H), 6.17 (d, J = 1.7 Hz, 1H), 6.47 (d, J = 8.0 Hz, 1H), 6.51 (d, J = 1.7 Hz, 1H), 6.56 (d, J = 8.0 Hz, 1H), 6.89 (dd, J = 2.3, 1.7 Hz, 1H), 7.22 (dd, J = 1.7, 1.7 Hz, 1H) ppm; ¹³C{¹H} NMR (CDCl₃, 125 MHz) δ 31.0, 32.6, 33.5, 35.4, 117.6, 120.0, 127.0, 127.9, 128.8, 129.5, 131.6, 134.3, 135.1, 137.7, 138.8, 141.3, 142.3, 148.5 ppm. HRMS (APCI) calcd for C₁₇H₁₄BrF₃O₃S+H⁺: 434.9872, found 434.9866. [α]²⁵_D = -91.79 (c 0.20, CHCl₃).

 (S_p) -5 was obtained in 91% yield by the same procedure of (R_p) -4. HRMS (APCI) calcd. for $C_{17}H_{14}BrF_3O_3S+H^+$: 434.9872, found 434.9868. $[\alpha]^{25}_{D} = +91.61$ (*c* 0.25, CHCl₃).

(B)

Fig. S8. (A) ¹H NMR spectrum and (B) ¹³C{¹H} NMR spectrum of (R_p) -5 in CDCl₃.

Fig. S9. Mass spectra of (A) (R_p) -5 and (S_p) -5; upper and lower spectra show observed and calculated spectra, respectively.

Synthesis of (S_P) -7

A mixture of (R_p) -5 (1.75 g, 4.0 mmol), Pd(OAc)₂ (46.9 mg, 0.20 mmol) and P(*o*-tol)₃ (232.9 mg, 0.76 mmol) was placed in a round-bottom flask equipped with a magnetic stirring bar. After degassing the reaction mixture several times, DMF (12 mL), Et₃N (62 mL) and styrene 6 (0.65 mL, 613.2 mg, 5.63 mmol) were added, and the reaction was carried out at 120 °C for 48 h with stirring. After the reaction mixture was cooled to room temperature, precipitates were removed by filtration. The organic layer was separated, and then aqueous layer was extracted with CH₂Cl₂. The organic layer was washed with H₂O and brine, and dried over MgSO₄. MgSO₄ was removed by filtration, and the solvent was removed with a rotary evaporator. The residue was purified by column chromatography on SiO₂ (CHCl₃/hexane = 1/2 v/v as an eluent) to afford (S_p)-7 (1.49 g, 4.03 mmol, 81%) as a yellow oil.

 $R_{\rm f}$ = 0.45 (CHCl₃/hexane = 1/2 v/v). ¹H NMR (CDCl₃, 500 MHz) δ 2.82–3.21 (m, 6H), 3.39–3.48 (m, 1H), 3.60–3.69 (m, 1H), 6.21 (d, J = 1.7 Hz, 1H), 6.47 (d, J = 8.0 Hz, 1H), 6.52 (d, J = 8.0 Hz, 1H), 6.65 (d, J = 1.7 Hz, 1H), 6.78 (dd, J = 1.7, 1.7 Hz, 1H), 6.85 (dd, J = 2.3, 1.7 Hz, 1H), 6.90 (d, J = 16.0 Hz, 1H), 7.18 (d, J = 16.0 Hz, 1H), 7.31 (t, J = 7.5, 7.5 Hz, 1H), 7.42 (t, J = 7.5, 8.0 Hz, 2H), 7.57 (d, J = 6.9 Hz, 2H) ppm; ¹³C {¹H} NMR (CDCl₃, 125 MHz) δ 30.8, 33.3, 33.8, 33.9, 117.5, 120.1, 126.3, 126.5, 127.6, 127.8, 128.8, 128.9, 129.8, 130.2, 130.4, 131.8, 134.2, 134.6, 137.5, 137.6, 137.8, 139.5, 142.3, 148.3 ppm. HRMS (ESI+) calcd for C₂₅H₂₁BrF₃O₃S+Na⁺: 481.1056, found 481.1063. [α]²⁵_D = -60.51 (c 0.11, CHCl₃).

 (R_p) -7 was obtained in 80% yield by the same procedure of (S_p) -7. HRMS (APCI) calcd. for C₂₅H₂₁BrF₃O₃S+H⁺: 459.1236, found 459.1227. [α]²⁵_D = +60.37 (*c* 0.11, CHCl₃).

(B)

Fig. S10. (A) ¹H NMR spectrum and (B) ¹³C{¹H} NMR spectrum of (S_p) -7 in CDCl₃.

22

0.5 0.0 460.1270 461.1197 462.1228 458.5 459.0 459.5 460.0 460.5 461.0 461.5 462.0 462.5 m/z

Fig. S11. Mass spectra of (A) (S_p) -7 and (R_p) -7; upper and lower spectra show observed and calculated spectra, respectively.

Synthesis of (S_P) -9

A mixture of (S_p) -7 (252.5 mg, 0.55 mmol), Pd₂(dba)₃ (51.0 mg, 0.056 mmol) and S-Phos (79.8 mg, 0.19 mmol) was placed in a round-bottom flask equipped with a magnetic stirring bar. After degassing the reaction mixture several times, DMF (81 mL), Et₃N (1.5 mL) and 2-vinylnaphthalene **8** (120.0 mg, 0.78 mmol) were added, and the reaction was carried out at 120 °C for 48 h with stirring. After the reaction mixture was cooled to room temperature, precipitates were removed by filtration. The organic layer was separated, and then aqueous layer was extracted with CH₂Cl₂. The organic layer was washed with H₂O and brine, and dried over MgSO₄. MgSO₄ was removed by filtration, and the solvent was removed with a rotary evaporator. The residue was purified by column chromatography on SiO₂ (CHCl₃/hexane = 1/2 v/v as an eluent) and recrystallization from CHCl₃/MeOH (v/v = 1/1) to afford (S_p)-**9** (154.5 mg, 0.33 mmol, 81%) as a light yellow solid.

 $R_{\rm f}$ = 0.40 (CHCl₃/hexane = 1/2 v/v). ¹H NMR (CDCl₃, 500 MHz) δ 2.88–3.09 (m, 4H), 3.10–3.19 (m, 2H), 3.56–3.69 (m, 2H), 6.45 (t, *J* = 8.0, 5.7 Hz, 2H), 6.66–6.77 (m, 4H), 6.90 (d, *J* = 16.0 Hz, 1H), 7.06 (d, *J* = 16.0 Hz, 1H), 7.23 (s, 1H), 7.31 (t, *J* = 7.5, 7.5 Hz, 1H), 7.36 (d, *J* = 16.6 Hz, 1H), 7.43 (t, *J* = 7.5, 7.5 Hz, 2H), 7.46–7.54 (m, 2H), 7.60 (d, *J* = 7.5 Hz, 2H), 7.81–7.91 (m, 4H), 7.92 (s, 1H) ppm; ¹³C{¹H} NMR (CDCl₃, 125 MHz) δ 33.4, 33.4, 34.5, 123.5, 125.9, 126.4, 126.5, 127.0, 127.3, 127.5, 127.7, 128.0, 128.4, 128.8, 129.3, 129.4, 129.5, 129.5, 130.1, 130.2, 133.6, 133.6, 139.5, 139.5 ppm. HRMS (APCI) calcd for C₃₆H₃₀+H⁺: 463.2420, found 463.2410. [α]²⁵_D = -91.24 (*c* 0.20, CHCl₃).

 (R_p) -9 was obtained in 70% yield by the same procedure of (S_p) -9. HRMS (APCI) calcd. for $C_{36}H_{30}$ +H⁺: 463.2420, found 463.2414. $[\alpha]^{25}{}_{D}$ = +91.84 (*c* 0.20, CHCl₃).

(B)

(A)

Fig. S12. (A) ¹H NMR spectrum and (B) ¹³C{¹H} NMR spectrum of (S_p) -9 in CDCl₃.

25

Fig. S13. Mass spectra of (A) (S_p) -9 and (R_p) -9; upper and lower spectra show observed and calculated spectra, respectively.

Fig. S14. ORTEP drawings of (S_p) -9 (CCDC-2214408). Thermal ellipsoids are drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.

Formula	C ₃₆ H ₃₀
Formula weight	462.639
Temperature (K)	150
Crystal color, habit	clear, light yellow
Crystal size, mm	$0.1 \times 0.1 \times 0.05$
Crystal system	monoclinic
Space group	<i>P</i> 2 ₁ (#4)
<i>a</i> , Å	11.7851(8)
<i>b</i> , Å	8.4229(4)
<i>c</i> , Å	14.0354(9)
a, deg	90
β , deg	113.748(8)
γ, deg	90
<i>V</i> , Å ³	1275.25(15)
Zvalue	2
$D_{ m calcd}, { m g~cm^{-3}}$	1.205
μ (MoK α), cm ⁻¹	0.68
<i>F</i> (000)	492.248
$2\theta_{\rm max}$, deg	62.26
No. of reflections measured	12303
No. of observed reflections	6459
No. of variables	325
$R_1 (\mathbf{I} > 2\sigma(\mathbf{I}))^{[\mathbf{a}]}$	0.0577(4855)
wR_2 (all refins) ^[b]	0.1757(6459)
Goodness of fit	1.0511
Flack Parameter	3(3)

Table S3. Crystallographic data for (S_p) -9.

[a] $R_1 = \Sigma(|F_o| - |F_c|) / \Sigma(|F_o|)$. [b] $wR_2 = [\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma w(F_o^2)^2]^{1/2}$. Recrystallization solvent : chloroform/acetonitrile Synthesis of (R_P) -10

 (S_p) -9 (50.5 mg, 0.11 mmol) was placed in a round-bottom flask equipped with a magnetic stirring After toluene (94 mL), THF (2.0 mL), and I₂ (6.81 mg, 0.05 mmol) were added, the mixture was irradiated with a UV lamp (LED λ = 365 nm), and the reaction was carried out at room temperature for 6 h with stirring under air. H₂O and NaHSO₃ were added in the reaction mixture. The organic layer was separated, and then aqueous layer was extracted with CH₂Cl₂. The organic layer was washed with H₂O and brine, and dried over MgSO₄. MgSO₄ was removed by filtration, and the solvent was removed with a rotary evaporator. The residue was purified by recyclable HPLC (CH₂Cl₂) and column chromatography on SiO₂ (CHCl₃/hexane = 1/2 v/v as an eluent) to afford (*R*_P)-**10** (2.5 mg, 0.0054 mmol, 5%) as a white solid.

 $R_{\rm f}$ = 0.30 (CHCl₃/hexane = 1/2 v/v). ¹H NMR (CDCl₃, 500 MHz): δ 1.91–1.99 (m, 1H), 2.86–2.90 (m, 1H), 3.27–3.29 (m, 2H), 3.48–3.51 (m, 1H), 3.69–3.73 (m, 2H), 4.62–4.66 (m, 1H), 5.25 (d, *J* = 6.9 Hz, 1H), 5.60 (d, *J* = 6.9 Hz, 1H), 6.42 (dd, *J* = 6.9, 6.9 Hz, 2H), 7.54–7.63 (m, 5H), 7.75 (d, *J* = 8.6 Hz, 1H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.90–7.97 (m, 4H), 8.01 (dd, *J* = 1.7, 1.2 Hz, 1H), 8.57 (d, *J* = 8.0 Hz, 1H), ppm; ¹³C{¹H} NMR (CDCl₃, 125 MHz): δ 32.0, 32.1, 37.7, 38.4, 124.1, 124.5, 125.5, 125.7, 125.8, 126.0, 126.5, 126.5, 127.1, 127.2, 127.7, 127.9, 128.4, 128.6, 128.8, 129.3, 129.7, 130.5, 131.2, 131.4, 132.1, 132.5, 132.5, 133.4, 134.2, 134.4, 135.4, 136.0, 136.6 ppm. HRMS (APCI): m/z calcd for C₃₆H₂₆+H⁺: 459.2107; found: 459.2092. [α]²⁵_D = +304.43 (*c* 0.060, CHCl₃).

 (S_p) -10 was obtained in 6% yield by the same procedure of (R_p) -10. HRMS (APCI) calcd. for C₃₆H₂₆+H⁺: 459.2107, found 459.2114. [α]²⁵_D = -304.23 (*c* 0.060, CHCl₃).

(B)

Fig. S15. (A) ¹H NMR spectrum and (B) ¹³C{¹H} NMR spectrum of (S_p) -10 in CDCl₃.

Fig. S16. Mass spectra of (A) (S_p) -10 and (R_p) -10; upper and lower spectra show observed and calculated spectra, respectively.

Fig. S17. ORTEP drawings of (R_p) -10 (CCDC-2214409). Thermal ellipsoids are drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.

Formula	C ₃₆ H ₂₆
Formula weight	458.57
Temperature (K)	150
Crystal color, habit	clear, colourless, needle
Crystal size, mm	0.2 imes 0.1 imes 0.05
Crystal system	monoclinic
Space group	<i>P</i> 2 ₁ (#4)
<i>a</i> , Å	10.4112(8)
b, Å	8.1076(7)
<i>c</i> , Å	14.6075(11)
α, deg	90
β , deg	102.802(8)
γ, deg	90
<i>V</i> , Å ³	1202.37(17)
Z value	2
$D_{ m calcd}, { m g~cm^{-3}}$	1.267
μ (MoK α), cm ⁻¹	0.72
<i>F</i> (000)	484
$2\theta_{\rm max}$, deg	62.398
No. of reflections measured	11308
No. of observed reflections	6766
No. of variables	325
$R_1 (\mathbf{I} > 2\sigma(\mathbf{I}))^{[a]}$	0.0747(4037)
wR ₂ (all reflns) ^[b]	0.2091(6766)
Goodness of fit	0.919
Flack Parameter	4.7(10)
$\frac{\Gamma_{12}}{\Gamma_{12}} = \sum_{i=1}^{n} \frac{\Gamma_{12}}{\Gamma_{12}} = \sum_{i=1}^$	$\frac{4.7(10)}{10000000000000000000000000000000000$

Table S4.	Crystallog	aphic da	ta for	$(R_{p})-10.$
	/			(p) - · ·

[a] $R_1 = \Sigma(|F_o| - |F_c|) / \Sigma(|F_o|)$. [b] $wR_2 = [\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma w(F_o^2)^2]^{1/2}$. Recrystallization solvent : chloroform / acetonitrile Synthesis of (S_p) -12

A mixture of (S_p) -**11** (534.1mg, 1.227 mmol), Pd(OAc)₂ (27.6 mg, 0.123 mmol) and P(*o*-tol)₃ (131.0mg, 0.430 mmol) was placed in a round-bottom flask equipped with a magnetic stirring bar. After degassing the reaction mixture several times, DMF (18.7 mL), Et₃N (4 mL) and styrene **6** (0.183 mL, 166.1 mg, 1.6 mmol) were added, and the reaction was carried out at 120 °C for 48 h with stirring. After the reaction mixture was cooled to room temperature, precipitates were removed by filtration. The organic layer was separated, and then aqueous layer was extracted with CH₂Cl₂. The organic layer was washed with H₂O and brine, and dried over MgSO₄. MgSO₄ was removed by filtration, and the solvent was removed with a rotary evaporator. The residue was purified by column chromatography on SiO₂ (CHCl₃/hexane = 1/6 v/v as an eluent) and recrystallization from CHCl₃/MeOH (v/v = 1/1) to afford (S_p)-**12** (433.6 mg, 0.946 mmol, 77%) as a white solid.

 $R_{\rm f} = 0.42 \; (CH_2Cl_2/\text{hexane} = 1/2 \text{ v/v}). \quad {}^{1}\text{H NMR} \; (CDCl_3, 500 \text{ MHz}) \; \delta \; 2.73-2.81 \; (\text{m}, 1\text{H}), 2.98-3.19 \; (\text{m}, 5\text{H}), 3.37 \; (\text{dd}, J = 9.2, 4.6 \text{ Hz}, 1\text{H}), 3.54 \; (\text{dd}, J = 9.7, 4.0 \text{ Hz}, 1\text{H}), 6.24 \; (\text{s}, 1\text{H}), 6.48 \; (\text{d}, J = 8.0 \text{ Hz}, 1\text{H}), 6.53 \; (\text{d}, J = 8.0 \text{ Hz}, 1\text{H}), 6.73 \; (\text{s}, 1\text{H}), 6.82 \; (\text{d}, J = 8.0 \text{ Hz}, 1\text{H}), 6.89-6.93 \; (\text{m}, 2\text{H}), 7.11 \; (\text{d}, J = 16.0 \text{ Hz} \; 1\text{H}), 7.31 \; (\text{t}, J = 6.9 \text{ Hz}, 1\text{H}), 7.41 \; (\text{dd}, J = 8.0, 6.9 \text{ Hz}, 2\text{H}), 7.57 \; (\text{d}, J = 8.0 \text{ Hz}, 2\text{H}) \; \text{ppm}; \; {}^{13}\text{C}\{{}^{1}\text{H}\} \; \text{NMR} \; (\text{CDCl}_3, 125 \text{ MHz}) \; \delta \; 31.4, 32.2, 34.5, 34.8, 126.0, 126.6, 127.3, 127.9, 128.8, 129.6, 129.9, 131.2, 131.5, 131.7, 132.4, 137.5, 138.1, 138.2, 139.4, 141.2, 142.9, 148.5 \text{ ppm}. \; \text{HRMS} \; (\text{APCI}) \; \text{calcd. for } C_{25}\text{H}_{21}\text{F}_3\text{O}_3\text{S}+\text{Na}^+: 481.1056, \; \text{found } 481.1068. \; [\alpha]^{25}\text{D} = +295.13 \; (c \; 0.078, \text{CHCl}_3).$

 (R_p) -12 was obtained in 12% yield by the same procedure of (R_p) -12. HRMS (APCI) calcd. for $C_{25}H_{21}F_3O_3S+Na^+$: 481.1056, found 481.1062. $[\alpha]^{25}_D = -295.17$ (*c* 0.102, CHCl₃).

Fig. S18. (A) ¹H NMR spectrum and (B) ¹³C{¹H} NMR spectrum of (S_p) -12 in CDCl₃.

Fig. S19. Mass spectra of (A) (S_p) -12 and (R_p) -12; upper and lower spectra show observed and calculated spectra, respectively.

Synthesis of (S_p) -13

A mixture of (S_p) -12 (221.9 mg, 0.48 mmol), Pd(OAc)₂ (10.8 mg, 0.048 mmol) and S-Phos (69.0 mg, 0.17 mmol) was placed in a round-bottom flask equipped with a magnetic stirring bar. After degassing the reaction mixture several times, DMF (7.3 mL), Et₃N (1.6 mL) and 2-vinylnaphthalene (89.4 mg, 0.58 mmol) were added, and the reaction was carried out at 120 °C for 48 h with stirring. After the reaction mixture was cooled to room temperature, precipitates were removed by filtration. The organic layer was separated, and then aqueous layer was extracted with CH₂Cl₂. The organic layer was washed with H₂O and brine, and dried over MgSO₄. MgSO₄ was removed by filtration, and the solvent was removed with a rotary evaporator. The residue was purified by column chromatography on SiO₂ (CHCl₃/hexane = 1/3 v/v as an eluent) and recrystallization from CHCl₃/MeOH (v/v = 1/1) to afford (S_p)-13 (78.7 mg, 0.17 mmol, 35%) as a light yellow solid.

 $R_{\rm f} = 0.31 \; (CH_2Cl_2/hexane = 1/2 \text{ v/v}).$ ¹H NMR (CDCl3, 500 MHz) δ 2.86–2.93 (m, 2H), 2.99– 3.06 (m, 2H), 3.15–3.20 (m, 2H), 3.53–3.63 (m, 2H), 6.45 (dd, $J = 7.5 \; \text{Hz}, 2\text{H}$), 6.72–6.74 (m, 2H), 6.78 (s, 1H), 6.82 (s, 1H), 6.94 (d, $J = 16.0 \; \text{Hz}, 1\text{H}$), 7.10(d, $J = 16.61 \; \text{Hz}, 1\text{H}$), 7.20 (d, $J = 16.0 \; \text{Hz}, 1\text{H}$), 7.29–7.32 (m, 2H), 7.42 (dd, $J = 7.5 \; \text{Hz}, 2\text{H}$), 7.45–7.52 (m, 2H), 7.59 (d, $J = 8.0 \; \text{Hz}, 2\text{H}$), 7.81– 7.88 (m, 4H), 7.91 (s, 1H) ppm; ¹³C{¹H} NMR (CDCl₃, 125 MHz) δ 33.5, 35.1, 123.5, 125.9, 126.4, 126.5, 126.7, 127.0, 127.6, 127.7, 128.0, 128.4, 128.8, 129.1, 129.2, 129.6, 130.9, 131.0, 131.2, 133.0, 133.8, 135.3, 137.8, 137.9, 138.1, 138.2 139.7, 139.8 ppm. HRMS (APCI) calcd. for C₃₆H₃₀+H⁺: 463.2420, found 463.2417. [α]²⁵_D = +902.2 (*c* 0.204, CHCl₃).

 (R_p) -13 was obtained in 34% yield by the same procedure of (S_p) -13. HRMS (APCI) calcd. for $C_{36}H_{30}$ +H⁺: 463.2420, found 463.2420. $[\alpha]^{25}_{D} = -902.4$ (*c* 0.126, CHCl₃).

Fig. S20. (A) ¹H NMR spectrum and (B) ¹³C{¹H} NMR spectrum of (S_p) -13 in CDCl₃.

Fig. S21. Mass spectra of (A) (S_p) -13 and (R_p) -13; upper and lower spectra show observed and calculated spectra, respectively.

Synthesis of (R_p) -14

 (S_p) -13 (78.7 mg, 0.17 mmol) was placed in a round-bottom flask equipped with a magnetic stirring bar. After toluene (170 mL), THF (6 mL) and I₂ (21.6 mg, 0.085 mmol) were added, the mixture was irradiated with a UV lamp (LED λ = 365 nm), and the reaction was carried out at room temperature for 7 h with stirring. H₂O and NaHSO₃ were added in the reaction mixture. The organic layer was separated, and then aqueous layer was extracted with CH₂Cl₂. The organic layer was washed with H₂O and brine, and dried over MgSO₄. MgSO₄ was removed by filtration, and the solvent was removed with a rotary evaporator. The residue was purified by recyclable HPLC (CH₂Cl₂) to afford (R_p)-14 (7.2 mg, 0.016 mmol, 9%) as a colorless solid.

 $R_{\rm f} = 0.39 \;({\rm CH_2Cl_2/hexane} = 1/2 \;{\rm v/v}). \;^{1}{\rm H}\;{\rm NMR}\;({\rm CDCl_3},\;500\;{\rm MHz})\;\delta\;2.70-2.75\;({\rm m},\;1{\rm H}),\;2.94-3.00\;({\rm m},\;1{\rm H}),\;3.12-3.27\;({\rm m},\;3{\rm H}),\;3.72-3.78\;({\rm m},\;1{\rm H}),\;3.90-3.98\;({\rm m},\;2{\rm H}),\;5.44\;({\rm d},\;J=8.02\;{\rm Hz},\;1{\rm H}),\;5.86\;({\rm d},\;J=7.5\;{\rm Hz},\;1{\rm H}),\;6.04\;({\rm d},\;J=8.0\;{\rm Hz},\;1{\rm H}),\;6.13\;({\rm d},\;J=7.5\;{\rm Hz},\;1{\rm H}),\;7.46-7.59\;({\rm m},\;4{\rm H}),\;7.79\;({\rm d},\;J=8.6\;{\rm Hz},\;1{\rm H}),\;7.83\;({\rm d},\;J=7.5\;{\rm Hz},\;1{\rm H}),\;7.92-8.01\;({\rm m},\;5{\rm H}),\;8.23\;({\rm d},\;J=8.0\;{\rm Hz},\;1{\rm H}),\;8.44\;({\rm d},\;J=8.6\;{\rm Hz},\;1{\rm H})\;{\rm ppm};\;^{13}{\rm C}\{^{1}{\rm H}\}\;{\rm NMR}\;({\rm CDCl_3},\;125\;{\rm MHz})\;\delta\;32.6,\;32.7,\;36.6,\;38.0,\;123.4,\;124.4,\;125.2,\;125.5,\;125.6,\;125.66,\;125.73,\;125.9,\;126.5,\;127.2,\;127.5,\;127.6,\;128.1,\;128.2,\;128.4,\;128.7,\;128.8,\;129.2,\;129.5,\;130.2,\;130.3,\;130.4,\;130.5,\;132.2,\;132.3,\;132.8,\;133.0,\;134.2,\;134.4,\;134.6,\;136.0,\;137.8\;{\rm ppm}.$ HRMS (APCI) calcd. for C₃₆H₂₆+H⁺: 459.2107, found 459.2100. [\$\alpha\$]^{25}{\rm D}=+508.4\;(\$c\;0.042\$, CHCl_3\$).

(*S*_p)-14 was obtained in 10% yield by the same procedure of (*R*_p)-14. HRMS (APCI) calcd. for $C_{36}H_{26}+H^+$: 459.2107, found 459.2106. [α]²⁵_D = -508.3 (*c* 0.02, CHCl₃).

Fig. S22. (A) ¹H NMR spectrum and (B) ¹³C{¹H} NMR spectrum of (R_p) -14 in CDCl₃.

Fig. S23. Mass spectra of (A) (R_p) -14 and (S_p) -14; upper and lower spectra show observed and calculated spectra, respectively.

Fig. S24. ORTEP drawings of (R_p) -14 (CCDC-2214410). Thermal ellipsoids are drawn at the 30% probability level. Hydrogen atoms are omitted for clarity.

Formula	C ₃₆ H ₂₆
Formula weight	458.57
Temperature (K)	123
Crystal color, habit	colourless,plate
Crystal size, mm	0.05×0.02×0.01
Crystal system	monoclinic
Space group	<i>P</i> 2 ₁ (#4)
<i>a</i> , Å	9.1321(8)
<i>b</i> , Å	9.8490(9)
<i>c</i> , Å	13.2407(12)
α, deg	90
β , deg	98.635(9)
γ, deg	90
<i>V</i> , Å ³	1177.40(19)
Z value	2
D_{calcd} , g cm ⁻³	1.293
μ (MoK α), cm ⁻¹	0.073
<i>F</i> (000)	484.0
$2\theta_{\rm max}$, deg	62.254
No. of reflections measured	11438
No. of observed reflections	6335
No. of variables	325
$R_1 (\mathbf{I} > 2\sigma(\mathbf{I}))^{[\mathbf{a}]}$	0.0776(3684)
wR ₂ (all reflns) ^[b]	0.1748(6335)
Goodness of fit	1.015
Flack Parameter	2.0 (10)
$\begin{bmatrix} 0 \end{bmatrix} \mathbf{P}_{i} = \mathbf{\Sigma}(\mathbf{E} \mathbf{E}) / \mathbf{\Sigma}(\mathbf{E}) \qquad \begin{bmatrix} \mathbf{b} \end{bmatrix} \mathbf{W}_{i}$	$P_{2} = [\Sigma[w(E^{2} - E^{2})^{2}]/\Sigma w(E^{2})^{2}]/2$

Table S5. Crystallographic data for (R_p) -1

[a] $R_1 = \Sigma(|F_o| - |F_c|) / \Sigma(|F_o|)$. [b] w $R_2 = [\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma w(F_o^2)^2]^{1/2}$. Recrystallization solvent : chloroform / methanol

Fig. S25. Absolute configurations of planar chiral molecules 4, 7, and 9.

Fig. S26. Simulated UV-vis spectrum (half-width at half height = 0.20 eV) of (R_p)-10 by TD-DFT calculation (TD-CAM-B3LYP(CHCl₃)/6-31G(d)//CAM-B3LYP(CHCl₃)/6-31G(d)).

Fig. S27. Simulated ECD spectrum (half-width at half height = 0.20 eV) of (R_p)-10 by TD-DFT calculation (TD-CAM-B3LYP(CHCl₃)/6-31G(d)//CAM-B3LYP(CHCl₃)/6-31G(d)).

Table S6. Selected data for excitation energy, major configuration, coefficient, oscillator strength, and rotatory strengths for (R_p) -10.^a

State	Excitation energy	Major	Coefficient	Oscillator	Rotatory Strengths
	/ eV (/ nm)	Configuration		strength	$/ 10^{-40} esu^2 cm^2$
S ₁	3.88 (319)	H→L+1	0.42351	0.0020	1.8037
S_2	4.02 (308)	H→L	0.60759	0.0267	-5.2450
S_3	4.09 (303)	$H-1 \rightarrow L+1$	0.38266	0.0242	-11.3387
S 4	4.33 (286)	$H-1\rightarrow L+2$	0.39231	0.1865	-27.7546
S5	4.48 (277)	H−2→L	0.43331	0.8645	239.2795
S 6	4.64 (267)	$H-2\rightarrow L+1$	0.39029	0.0179	-82.8554
S 7	4.73 (262)	H−1→L	0.29806	0.1275	-60.8531
S 8	4.77 (260)	$H-1\rightarrow L+2$	0.25041	0.1921	-176.4591
S 9	4.83 (257)	H-2→L+1	0.32718	0.6152	397.3696
S10	4.90 (253)	$H \rightarrow L+2$	0.49447	0.0878	-81.2049
S11	4.99 (249)	H–4→L	0.41195	0.0261	128.1694
S12	5.07 (245)	$H-3\rightarrow L+1$	0.38603	0.4512	-421.8813
S13	5.15 (241)	$H \rightarrow L+1$	0.30093	0.0503	39.7007
S14	5.24 (237)	$H \rightarrow L+3$	0.33265	0.0413	-42.7019
S15	5.29 (234)	H-3→L	0.39183	0.0356	33.5135
S16	5.33 (232)	$H \rightarrow L+4$	0.27819	0.0072	8.2541

^a Estimated from TD-DFT calculations (TD-CAM-B3LYP/6-31G(d)) based on optimized structures determined by DFT calculation (CAM-B3LYP/6-31G(d)). H and L denote HOMO and LUMO.

Fig. S28. Simulated UV-vis spectrum (half-width at half height = 0.20 eV) of (R_p)-14 by TD-DFT calculation (TD-CAM-B3LYP(CHCl₃)/6-31G(d)//CAM-B3LYP(CHCl₃)/6-31G(d)).

Fig. S29. Simulated ECD spectrum (half-width at half height = 0.20 eV) of (R_p)-14 by TD-DFT calculation (TD-CAM-B3LYP(CHCl₃)/6-31G(d)//CAM-B3LYP(CHCl₃)/6-31G(d)).

Table S7. Selected data for excitation energy, major configuration, coefficient, oscillator strength, and rotatory strengths for (R_p) -14.^a

State	Excitation energy	Major	Coefficient	Oscillator	Rotatory Strengths
	/ eV (/ nm)	Configuration		strength	$/ 10^{-40} \mathrm{esu}^2 \mathrm{cm}^2$
S ₁	3.86 (321)	H→L+1	0.39875	0.0014	4.8528
S_2	3.99 (311)	H→L	0.57099	0.0367	13.6274
S ₃	4.07 (305)	H-1→L+3	0.27297	0.0016	-11.0044
S 4	4.32 (287)	$H-1\rightarrow L+2$	0.33622	0.1288	-8.6206
S 5	4.49 (276)	H−2→L	0.43620	0.9858	170.3518
S 6	4.64 (267)	H−1→L	0.39372	0.0570	76.7423
S 7	4.75 (261)	$H-4\rightarrow L+1$	0.21301	0.3658	-45.8299
S 8	4.76 (261)	$H-2\rightarrow L+1$	0.41314	0.0369	245.0402
S 9	4.87 (255)	H-2→L+2	0.38008	0.0612	-46.4189
S10	4.89 (254)	$H \rightarrow L+2$	0.29599	0.4712	198.0918
S11	5.02 (247)	H-4→L	0.39104	0.0383	112.3381
S12	5.07 (245)	$H-3\rightarrow L+1$	0.35699	0.000	-528.3133
S13	5.15 (241)	$H \rightarrow L+3$	0.45459	0.0058	-16.3965
S14	5.17 (240)	$H-1\rightarrow L+3$	0.29850	0.1382	45.7511
S15	5.34 (232)	H-3→L	0.35620	0.0751	-44.5018
S16	5.36 (231)	H-4→L	0.45069	0.1397	-77.9917

^a Estimated from TD-DFT calculations (TD-CAM-B3LYP/6-31G(d)) based on optimized structures determined by DFT calculation (CAM-B3LYP/6-31G(d)). H and L denote HOMO and LUMO.

Fig. S30. UV, CD, PL, CPL spectra, and g_{lum} charts of (S_p) - and (R_p) -9 in CHCl₃ (1.0 × 10⁻⁵ M). Excitation wavelength: 345 nm and 300 nm for PL and CPL, respectively.

Fig. S31. UV, CD, PL, CPL spectra, and g_{lum} charts of (S_p) - and (R_p) -13 in CHCl₃ (1.0×10⁻⁵ M). Excitation wavelength: 345 nm and 300 nm for PL and CPL, respectively.

Fig. S32. Molecular orbitals of (R_p) -10 with monomeric π -electron systems, phenanthrene and benzo[*c*]phenanthrene ((TD)-CAM-B3LYP(CHCl₃)/6-31G(d)).

Fig. S33. Molecular orbitals of (R_p) -14 with monomeric π -electron systems, phenanthrene and benzo[*c*]phenanthrene ((TD)-CAM-B3LYP(CHCl₃)/6-31G(d)).

Fig. S34. Energy calculations of (A) flipped phenanthrere (from (*M*)-helicity to (*P*)-helicity) and (B) flipped [4]helicene (from (*P*)-helicity to (*M*)-helicity) in (R_p)-10.

Fig. S35. Energy calculations of (A) flipped phenanthrere (from (*P*)-helicity to (*M*)-helicity) and (B) flipped [4]helicene (from (*P*)-helicity to (*M*)-helicity) in (R_p)-14.

Table S8. Cartesian coordinate of (R_p) -10 in ground state (CAM-B3LYP(CHCl₃)/6-31G(d)).

atom	Х	У	Z
С	-6.543641	-0.758407	-0.643855
С	-5.624462	-1.757745	-0.43634
С	-4.342371	-1.474232	0.080925
С	-3.963823	-0.134412	0.352451
Н	-7.528443	-0.988654	-1.037924
Н	-5.878255	-2.792531	-0.649599
С	-2.627249	0.153043	0.858739
С	-2.06845	1.4706	0.932886
С	-1.800073	-0.943476	1.230809
С	-0.948813	1.635703	1.722515
С	-0.493912	-0.726427	1.7554
С	-0.170536	0.550738	2.146603
Н	-0.539956	2.633146	1.851164
Н	0.7906	0.747174	2.613237
С	-2.247452	-2.282241	0.974808
С	-3.441506	-2.538855	0.395538
Н	-3.756059	-3.560097	0.199896
Н	-1.598159	-3.10587	1.250167
С	0.602356	-1.766296	1.688619
Н	0.324398	-2.709979	2.170471
Н	1.456568	-1.378019	2.250281
С	-6.208589	0.561244	-0.301808
Н	-6.9441	1.352502	-0.408886
С	-4.957569	0.858238	0.189593
Н	-4.753396	1.872389	0.500123
С	1.085423	-2.10427	0.225355
С	0.790327	-0.996672	-0.776959
Н	2.136692	-2.380894	0.293702
Н	0.553369	-2.996114	-0.118545
С	1.379498	0.312907	-0.739627
С	-0.347179	-1.155284	-1.537768
С	0.535421	1.420965	-1.057035

С	2.731441	0.581165	-0.287432
С	-1.111435	-0.059927	-1.970976
Н	-0.781632	-2.145909	-1.633177
С	-0.775408	1.21359	-1.581137
С	0.970115	2.738442	-0.724226
С	3.047504	1.877238	0.159583
С	3.820679	-0.379902	-0.358996
Н	-2.07855	-0.247537	-2.42864
С	-1.864323	2.264337	-1.512123
С	2.139566	2.948988	-0.07052
Н	0.327764	3.578825	-0.962031
С	4.297235	2.139709	0.802808
С	5.049094	-0.093987	0.295859
С	3.77199	-1.547453	-1.158445
Н	-1.577658	3.204588	-1.996112
Н	-2.723487	1.881896	-2.070177
Н	2.431864	3.949659	0.2348
С	5.237955	1.173813	0.926071
Н	4.4698	3.136741	1.198028
С	6.106927	-1.028997	0.24946
С	4.828398	-2.425662	-1.221072
Н	2.891122	-1.735527	-1.759796
Н	6.17631	1.368801	1.437048
С	6.000682	-2.184325	-0.484026
Н	7.024386	-0.797798	0.783553
Н	4.758739	-3.304115	-1.855077
Н	6.825544	-2.888692	-0.523831
С	-2.336608	2.606671	-0.047499
Н	-3.369757	2.944771	-0.114817

atom	X	y	Z
С	-6.5642944	-0.7789578	-0.6991692
С	-5.6403358	-1.7721071	-0.478473
С	-4.3658226	-1.4786735	0.05007602
С	-3.9977883	-0.1349527	0.31716987
С	-7.5436595	-1.0173872	-1.1018607
С	-5.8860739	-2.8093598	-0.6892096
Н	-2.6662197	0.1632571	0.83330515
Н	-2.1142049	1.48254318	0.89990185
С	-1.841165	-0.927869	1.23467065
С	-0.9994319	1.66387051	1.69369884
С	-0.5495239	-0.6990913	1.78618901
С	-0.2274496	0.58751238	2.14973009
С	-0.5961946	2.66470519	1.81222571
С	0.72367821	0.79137575	2.63317333
Н	-2.2791439	-2.2703698	0.98010943
Н	-3.4625669	-2.5366715	0.38331839
С	-3.7685778	-3.5607647	0.18920952
С	-1.6311431	-3.0896419	1.27111327
Н	0.54546668	-1.741521	1.78322458
Н	0.23760211	-2.6848456	2.24591428
С	1.36735579	-1.3567493	2.3928916
Н	-6.2418649	0.54321232	-0.3577244
Н	-6.9819425	1.32910409	-0.4725171
С	-4.9965641	0.84999966	0.14423314
Н	-4.8028513	1.8658928	0.45632933
Н	1.11053143	-2.0690873	0.34588429
С	0.81025531	-0.9831383	-0.6698747
С	2.17432747	-2.2762857	0.45720205
Н	0.64721764	-2.9931836	-0.0123225
Н	1.42070567	0.31196667	-0.6730628
С	-0.3300374	-1.1630396	-1.4516927
С	0 54683018	1 45114214	-1 0028963

Table S9. Cartesian coordinate of (R_p) -10 in S₁ state

C-1.0814706-0.0761561-1.917523C-0.7452909-2.1609394-1.5515179H-0.74484381.22182718-1.5439372C0.98532122.74513477-0.664363C3.118638691.907896730.16205395C3.84974623-0.3780844-0.4079635H-2.0330695-0.2631425-2.4051538H-1.8358682.2675983-1.5331644C2.207509282.96132481-0.0498154C0.337840623.59194697-0.8620189C4.360269862.13103750.79369269H5.10635632-0.11190220.25118635C3.77262529-1.5466195-1.2022049C-1.52015293.20586587-2.0028923H-2.66617871.88635578-2.133825H2.496545663.965813090.24459273C5.30983591.136720190.88444384H4.559428443.115712641.20669544H6.13181486-1.08121220.20337854C2.88010603-1.7168942-1.7934437C6.254830471.323252211.38566058H5.99070864-2.2388906-0.5295771C7.05603372-0.88051650.73830302H4.71112716-3.3395957-1.8862292H6.7958831-2.965548-0.5661679H-2.37835792.60873441-0.092171H-3.41762782.91267864-0.2037479 </th <th>С</th> <th>2.77589305</th> <th>0.57335092</th> <th>-0.2985155</th>	С	2.77589305	0.57335092	-0.2985155
C-0.7452909-2.1609394-1.5515179H-0.74484381.22182718-1.5439372C0.98532122.74513477-0.664363C3.118638691.907896730.16205395C3.84974623-0.3780844-0.4079635H-2.0330695-0.2631425-2.4051538H-1.8358682.2675983-1.5331644C2.207509282.96132481-0.0498154C0.337840623.59194697-0.8620189C4.360269862.13103750.79369269H5.10635632-0.11190220.25118635C3.77262529-1.5466195-1.2022049C-1.52015293.20586587-2.0028923H-2.66617871.88635578-2.133825H2.496545663.965813090.24459273C5.30983591.136720190.88444384H4.559428443.115712641.20669544H6.13181486-1.08121220.20337854C4.80739845-2.4566137-1.2625788C2.88010603-1.7168942-1.7934437C6.254830471.323252211.38566058H5.99070864-2.2388906-0.5295771C7.05603372-0.88051650.73830302H4.71112716-3.3395957-1.8862292H6.7958831-2.965548-0.5661679H-2.37835792.60873441-0.092171H-3.41762782.91267864-0.2037479<	С	-1.0814706	-0.0761561	-1.917523
H-0.74484381.22182718-1.5439372C0.98532122.74513477-0.664363C3.118638691.907896730.16205395C3.84974623-0.3780844-0.4079635H-2.0330695-0.2631425-2.4051538H-1.8358682.2675983-1.5331644C2.207509282.96132481-0.0498154C0.337840623.59194697-0.8620189C4.360269862.13103750.79369269H5.10635632-0.11190220.25118635C3.77262529-1.5466195-1.2022049C-1.52015293.20586587-2.0028923H-2.66617871.88635578-2.133825H2.496545663.965813090.24459273C5.30983591.136720190.88444384H4.559428443.115712641.20669544H6.13181486-1.08121220.20337854C4.80739845-2.4566137-1.2625788C2.88010603-1.7168942-1.7934437C6.254830471.323252211.38566058H5.99070864-2.2388906-0.5295771C7.05603372-0.88051650.73830302H4.71112716-3.3395957-1.8862292H6.7958831-2.965548-0.5661679H-2.37835792.60873441-0.092171H-3.41762782.91267864-0.2037479H-1.84693533.48912410.27823617 </td <td>С</td> <td>-0.7452909</td> <td>-2.1609394</td> <td>-1.5515179</td>	С	-0.7452909	-2.1609394	-1.5515179
C0.98532122.74513477-0.664363C3.118638691.907896730.16205395C3.84974623-0.3780844-0.4079635H-2.0330695-0.2631425-2.4051538H-1.8358682.2675983-1.5331644C2.207509282.96132481-0.0498154C0.337840623.59194697-0.8620189C4.360269862.13103750.79369269H5.10635632-0.11190220.25118635C3.77262529-1.5466195-1.2022049C-1.52015293.20586587-2.0028923H-2.66617871.88635578-2.133825H2.496545663.965813090.24459273C5.30983591.136720190.88444384H4.559428443.115712641.20669544H6.13181486-1.08121220.20337854C2.88010603-1.7168942-1.7934437C6.254830471.323252211.38566058H5.99070864-2.2388906-0.5295771C7.05603372-0.88051650.73830302H4.71112716-3.3395957-1.8862292H6.7958831-2.965548-0.5661679H-2.37835792.60873441-0.092171H-3.41762782.91267864-0.2037479H-1.84693533.48912410.27823617	Н	-0.7448438	1.22182718	-1.5439372
C3.118638691.907896730.16205395C3.84974623-0.3780844-0.4079635H-2.0330695-0.2631425-2.4051538H-1.8358682.2675983-1.5331644C2.207509282.96132481-0.0498154C0.337840623.59194697-0.8620189C4.360269862.13103750.79369269H5.10635632-0.11190220.25118635C3.77262529-1.5466195-1.2022049C-1.52015293.20586587-2.0028923H-2.66617871.88635578-2.133825H2.496545663.965813090.24459273C5.30983591.136720190.88444384H4.559428443.115712641.20669544H6.13181486-1.08121220.20337854C2.88010603-1.7168942-1.7934437C6.254830471.323252211.38566058H5.99070864-2.2388906-0.5295771C7.05603372-0.88051650.73830302H4.71112716-3.3395957-1.8862292H6.7958831-2.965548-0.5661679H-2.37835792.60873441-0.092171H-3.41762782.91267864-0.2037479H-1.84693533.48912410.27823617	С	0.9853212	2.74513477	-0.664363
C3.84974623-0.3780844-0.4079635H-2.0330695-0.2631425-2.4051538H-1.8358682.2675983-1.5331644C2.207509282.96132481-0.0498154C0.337840623.59194697-0.8620189C4.360269862.13103750.79369269H5.10635632-0.11190220.25118635C3.77262529-1.5466195-1.2022049C-1.52015293.20586587-2.0028923H-2.66617871.88635578-2.133825H2.496545663.965813090.24459273C5.30983591.136720190.88444384H4.559428443.115712641.20669544H6.13181486-1.08121220.20337854C4.80739845-2.4566137-1.2625788C2.88010603-1.7168942-1.7934437C6.254830471.323252211.38566058H5.99070864-2.2388906-0.5295771C7.05603372-0.88051650.73830302H4.71112716-3.3395957-1.8862292H6.7958831-2.965548-0.5661679H-2.37835792.60873441-0.092171H-3.41762782.91267864-0.2037479H-1.84693533.48912410.27823617	С	3.11863869	1.90789673	0.16205395
H-2.0330695-0.2631425-2.4051538H-1.8358682.2675983-1.5331644C2.207509282.96132481-0.0498154C0.337840623.59194697-0.8620189C4.360269862.13103750.79369269H5.10635632-0.11190220.25118635C3.77262529-1.5466195-1.2022049C-1.52015293.20586587-2.0028923H-2.66617871.88635578-2.133825H2.496545663.965813090.24459273C5.30983591.136720190.88444384H4.559428443.115712641.20669544H6.13181486-1.08121220.20337854C4.80739845-2.4566137-1.2625788C2.88010603-1.7168942-1.7934437C6.254830471.323252211.38566058H5.99070864-2.2388906-0.5295771C7.05603372-0.88051650.73830302H4.71112716-3.3395957-1.8862292H6.7958831-2.965548-0.5661679H-2.37835792.60873441-0.092171H-3.41762782.91267864-0.2037479H-1.84693533.48912410.27823617	С	3.84974623	-0.3780844	-0.4079635
H-1.8358682.2675983-1.5331644C2.207509282.96132481-0.0498154C0.337840623.59194697-0.8620189C4.360269862.13103750.79369269H5.10635632-0.11190220.25118635C3.77262529-1.5466195-1.2022049C-1.52015293.20586587-2.0028923H-2.66617871.88635578-2.133825H2.496545663.965813090.24459273C5.30983591.136720190.88444384H4.559428443.115712641.20669544H6.13181486-1.08121220.20337854C2.88010603-1.7168942-1.7934437C6.254830471.323252211.38566058H5.99070864-2.2388906-0.5295771C7.05603372-0.88051650.73830302H4.71112716-3.3395957-1.8862292H6.7958831-2.965548-0.5661679H-2.37835792.60873441-0.092171H-3.41762782.91267864-0.2037479H-1.84693533.48912410.27823617	Н	-2.0330695	-0.2631425	-2.4051538
C2.207509282.96132481-0.0498154C0.337840623.59194697-0.8620189C4.360269862.13103750.79369269H5.10635632-0.11190220.25118635C3.77262529-1.5466195-1.2022049C-1.52015293.20586587-2.0028923H-2.66617871.88635578-2.133825H2.496545663.965813090.24459273C5.30983591.136720190.88444384H4.559428443.115712641.20669544H6.13181486-1.08121220.20337854C4.80739845-2.4566137-1.2625788C2.88010603-1.7168942-1.7934437C6.254830471.323252211.38566058H5.99070864-2.2388906-0.5295771C7.05603372-0.88051650.73830302H4.71112716-3.3395957-1.8862292H6.7958831-2.965548-0.5661679H-2.37835792.60873441-0.092171H-3.41762782.91267864-0.2037479H-1.84693533.48912410.27823617	Н	-1.835868	2.2675983	-1.5331644
C0.337840623.59194697-0.8620189C4.360269862.13103750.79369269H5.10635632-0.11190220.25118635C3.77262529-1.5466195-1.2022049C-1.52015293.20586587-2.0028923H-2.66617871.88635578-2.133825H2.496545663.965813090.24459273C5.30983591.136720190.88444384H4.559428443.115712641.20669544H6.13181486-1.08121220.20337854C4.80739845-2.4566137-1.2625788C2.88010603-1.7168942-1.7934437C6.254830471.323252211.38566058H5.99070864-2.2388906-0.5295771C7.05603372-0.88051650.73830302H4.71112716-3.3395957-1.8862292H6.7958831-2.965548-0.5661679H-2.37835792.60873441-0.092171H-3.41762782.91267864-0.2037479H-1.84693533.48912410.27823617	С	2.20750928	2.96132481	-0.0498154
C4.360269862.13103750.79369269H5.10635632-0.11190220.25118635C3.77262529-1.5466195-1.2022049C-1.52015293.20586587-2.0028923H-2.66617871.88635578-2.133825H2.496545663.965813090.24459273C5.30983591.136720190.88444384H4.559428443.115712641.20669544H6.13181486-1.08121220.20337854C4.80739845-2.4566137-1.2625788C2.88010603-1.7168942-1.7934437C6.254830471.323252211.38566058H5.99070864-2.2388906-0.5295771C7.05603372-0.88051650.73830302H4.71112716-3.3395957-1.8862292H6.7958831-2.965548-0.5661679H-2.37835792.60873441-0.092171H-3.41762782.91267864-0.2037479H-1.84693533.48912410.27823617	С	0.33784062	3.59194697	-0.8620189
H5.10635632-0.11190220.25118635C3.77262529-1.5466195-1.2022049C-1.52015293.20586587-2.0028923H-2.66617871.88635578-2.133825H2.496545663.965813090.24459273C5.30983591.136720190.88444384H4.559428443.115712641.20669544H6.13181486-1.08121220.20337854C4.80739845-2.4566137-1.2625788C2.88010603-1.7168942-1.7934437C6.254830471.323252211.38566058H5.99070864-2.2388906-0.5295771C7.05603372-0.88051650.73830302H4.71112716-3.3395957-1.8862292H6.7958831-2.965548-0.5661679H-2.37835792.60873441-0.092171H-3.41762782.91267864-0.2037479H-1.84693533.48912410.27823617	С	4.36026986	2.1310375	0.79369269
C3.77262529-1.5466195-1.2022049C-1.52015293.20586587-2.0028923H-2.66617871.88635578-2.133825H2.496545663.965813090.24459273C5.30983591.136720190.88444384H4.559428443.115712641.20669544H6.13181486-1.08121220.20337854C4.80739845-2.4566137-1.2625788C2.88010603-1.7168942-1.7934437C6.254830471.323252211.38566058H5.99070864-2.2388906-0.5295771C7.05603372-0.88051650.73830302H4.71112716-3.3395957-1.8862292H6.7958831-2.965548-0.5661679H-2.37835792.60873441-0.092171H-3.41762782.91267864-0.2037479H-1.84693533.48912410.27823617	Н	5.10635632	-0.1119022	0.25118635
C-1.52015293.20586587-2.0028923H-2.66617871.88635578-2.133825H2.496545663.965813090.24459273C5.30983591.136720190.88444384H4.559428443.115712641.20669544H6.13181486-1.08121220.20337854C4.80739845-2.4566137-1.2625788C2.88010603-1.7168942-1.7934437C6.254830471.323252211.38566058H5.99070864-2.2388906-0.5295771C7.05603372-0.88051650.73830302H4.71112716-3.3395957-1.8862292H6.7958831-2.965548-0.5661679H-2.37835792.60873441-0.092171H-3.41762782.91267864-0.2037479H-1.84693533.48912410.27823617	С	3.77262529	-1.5466195	-1.2022049
H-2.66617871.88635578-2.133825H2.496545663.965813090.24459273C5.30983591.136720190.88444384H4.559428443.115712641.20669544H6.13181486-1.08121220.20337854C4.80739845-2.4566137-1.2625788C2.88010603-1.7168942-1.7934437C6.254830471.323252211.38566058H5.99070864-2.2388906-0.5295771C7.05603372-0.88051650.73830302H4.71112716-3.3395957-1.8862292H6.7958831-2.965548-0.5661679H-2.37835792.60873441-0.092171H-3.41762782.91267864-0.2037479H-1.84693533.48912410.27823617	С	-1.5201529	3.20586587	-2.0028923
H2.496545663.965813090.24459273C5.30983591.136720190.88444384H4.559428443.115712641.20669544H6.13181486-1.08121220.20337854C4.80739845-2.4566137-1.2625788C2.88010603-1.7168942-1.7934437C6.254830471.323252211.38566058H5.99070864-2.2388906-0.5295771C7.05603372-0.88051650.73830302H4.71112716-3.3395957-1.8862292H6.7958831-2.965548-0.5661679H-2.37835792.60873441-0.092171H-3.41762782.91267864-0.2037479H-1.84693533.48912410.27823617	Н	-2.6661787	1.88635578	-2.133825
C5.30983591.136720190.88444384H4.559428443.115712641.20669544H6.13181486-1.08121220.20337854C4.80739845-2.4566137-1.2625788C2.88010603-1.7168942-1.7934437C6.254830471.323252211.38566058H5.99070864-2.2388906-0.5295771C7.05603372-0.88051650.73830302H4.71112716-3.3395957-1.8862292H6.7958831-2.965548-0.5661679H-2.37835792.60873441-0.092171H-3.41762782.91267864-0.2037479H-1.84693533.48912410.27823617	Н	2.49654566	3.96581309	0.24459273
H4.559428443.115712641.20669544H6.13181486-1.08121220.20337854C4.80739845-2.4566137-1.2625788C2.88010603-1.7168942-1.7934437C6.254830471.323252211.38566058H5.99070864-2.2388906-0.5295771C7.05603372-0.88051650.73830302H4.71112716-3.3395957-1.8862292H6.7958831-2.965548-0.5661679H-2.37835792.60873441-0.092171H-3.41762782.91267864-0.2037479H-1.84693533.48912410.27823617	С	5.3098359	1.13672019	0.88444384
H6.13181486-1.08121220.20337854C4.80739845-2.4566137-1.2625788C2.88010603-1.7168942-1.7934437C6.254830471.323252211.38566058H5.99070864-2.2388906-0.5295771C7.05603372-0.88051650.73830302H4.71112716-3.3395957-1.8862292H6.7958831-2.965548-0.5661679H-2.37835792.60873441-0.092171H-3.41762782.91267864-0.2037479H-1.84693533.48912410.27823617	Н	4.55942844	3.11571264	1.20669544
C4.80739845-2.4566137-1.2625788C2.88010603-1.7168942-1.7934437C6.254830471.323252211.38566058H5.99070864-2.2388906-0.5295771C7.05603372-0.88051650.73830302H4.71112716-3.3395957-1.8862292H6.7958831-2.965548-0.5661679H-2.37835792.60873441-0.092171H-3.41762782.91267864-0.2037479H-1.84693533.48912410.27823617	Н	6.13181486	-1.0812122	0.20337854
C2.88010603-1.7168942-1.7934437C6.254830471.323252211.38566058H5.99070864-2.2388906-0.5295771C7.05603372-0.88051650.73830302H4.71112716-3.3395957-1.8862292H6.7958831-2.965548-0.5661679H-2.37835792.60873441-0.092171H-3.41762782.91267864-0.2037479H-1.84693533.48912410.27823617	С	4.80739845	-2.4566137	-1.2625788
C6.254830471.323252211.38566058H5.99070864-2.2388906-0.5295771C7.05603372-0.88051650.73830302H4.71112716-3.3395957-1.8862292H6.7958831-2.965548-0.5661679H-2.37835792.60873441-0.092171H-3.41762782.91267864-0.2037479H-1.84693533.48912410.27823617	С	2.88010603	-1.7168942	-1.7934437
H5.99070864-2.2388906-0.5295771C7.05603372-0.88051650.73830302H4.71112716-3.3395957-1.8862292H6.7958831-2.965548-0.5661679H-2.37835792.60873441-0.092171H-3.41762782.91267864-0.2037479H-1.84693533.48912410.27823617	С	6.25483047	1.32325221	1.38566058
C7.05603372-0.88051650.73830302H4.71112716-3.3395957-1.8862292H6.7958831-2.965548-0.5661679H-2.37835792.60873441-0.092171H-3.41762782.91267864-0.2037479H-1.84693533.48912410.27823617	Н	5.99070864	-2.2388906	-0.5295771
H4.71112716-3.3395957-1.8862292H6.7958831-2.965548-0.5661679H-2.37835792.60873441-0.092171H-3.41762782.91267864-0.2037479H-1.84693533.48912410.27823617	С	7.05603372	-0.8805165	0.73830302
H6.7958831-2.965548-0.5661679H-2.37835792.60873441-0.092171H-3.41762782.91267864-0.2037479H-1.84693533.48912410.27823617	Н	4.71112716	-3.3395957	-1.8862292
H-2.37835792.60873441-0.092171H-3.41762782.91267864-0.2037479H-1.84693533.48912410.27823617	Н	6.7958831	-2.965548	-0.5661679
H-3.41762782.91267864-0.2037479H-1.84693533.48912410.27823617	Н	-2.3783579	2.60873441	-0.092171
Н -1.8469353 3.4891241 0.27823617	Н	-3.4176278	2.91267864	-0.2037479
	Н	-1.8469353	3.4891241	0.27823617

Table S10. Cartesian coordinate of (R_p) -14 in ground state (CAM-B3LYP(CHCl₃)/6-31G(d)).

atom	Х	У	Ζ
С	-5.420369	0.119258	-1.175829
С	-4.781778	1.313285	-1.150618
С	-3.53883	1.472865	-0.463493
С	-2.911996	0.371263	0.145828
С	-3.696797	-0.843645	0.299012
С	-4.922477	-0.976986	-0.40839
Н	-6.351681	-0.004776	-1.720731
Н	-5.198183	2.176094	-1.662629
С	-1.564527	0.533498	0.658847
С	-0.653214	-0.555638	0.861405
С	-1.063541	1.856923	0.853185
С	0.441828	-0.325691	1.66379
С	0.221151	2.06479	1.43097
С	0.859125	0.976513	1.980625
Н	1.120346	-1.145195	1.885583
Н	1.81521	1.108898	2.478651
С	-1.804399	2.959091	0.328408
С	-2.953785	2.767777	-0.365238
Н	-3.479776	3.60849	-0.808465
Н	-1.415179	3.96272	0.457834
С	-0.645442	-1.791008	-0.034712
Н	-1.463399	-1.71497	-0.75184
Н	-0.819459	-2.717392	0.523083
С	1.018238	3.333616	1.211517
Н	0.46597	4.241854	1.473747
Н	1.888344	3.300581	1.873318
С	1.523217	3.476511	-0.276183
С	1.706915	2.130125	-0.941816
Н	2.431313	4.087509	-0.27036
Н	0.778356	4.037031	-0.847939
С	2.736187	1.222738	-0.571882
С	0.692713	1.651365	-1.742607

С	2.578555	-0.172154	-0.801271
С	3.896989	1.685522	0.135442
С	0.483349	0.272613	-1.877401
Н	-0.07397	2.331296	-2.102013
С	3.690819	-1.056503	-0.48649
С	1.310745	-0.643247	-1.262746
С	4.867891	0.838666	0.547255
Н	3.989385	2.746034	0.342376
Н	-0.458659	-0.062324	-2.303516
С	4.810141	-0.554142	0.222844
С	3.753101	-2.395359	-0.937847
С	0.703665	-1.967781	-0.814035
Н	5.733764	1.209693	1.088306
С	5.881647	-1.412304	0.546881
С	4.815374	-3.213716	-0.62435
Н	1.406039	-2.480978	-0.157739
Н	0.512688	-2.648971	-1.652381
С	5.883358	-2.72716	0.146136
Н	6.720963	-1.005996	1.104673
Н	6.716619	-3.376442	0.395795
С	-5.679688	-2.163756	-0.288172
С	-3.362302	-1.873017	1.21179
С	-4.133224	-3.003738	1.340268
Н	-3.851849	-3.766084	2.060151
С	-5.290591	-3.170389	0.559559
Н	-5.887318	-4.072233	0.653197
Н	-6.598201	-2.250688	-0.862
Н	-2.495136	-1.750699	1.847557
Н	4.832772	-4.235676	-0.990361
Н	2.968747	-2.778892	-1.578391

Table S11. Cartesian coordinate of (R_p) -14 in S₁ state (TD-CAM-B3LYP(CHCl₃)/6-31G(d)).

atom	Х	У	Z
С	-5.413134	0.075369	-1.175816
С	-4.772988	1.294574	-1.181456
С	-3.562833	1.496247	-0.482315
С	-2.916804	0.368703	0.163566
С	-3.695016	-0.827523	0.345988
С	-4.926375	-0.99448	-0.387448
Н	-6.336128	-0.060997	-1.731598
Н	-5.196903	2.130177	-1.730837
С	-1.570377	0.527114	0.615563
С	-0.650952	-0.554587	0.796444
С	-1.048695	1.888103	0.812688
С	0.444917	-0.345818	1.632939
С	0.221099	2.066926	1.41756
С	0.856855	0.953246	1.964659
Н	1.102017	-1.177073	1.871173
Н	1.796441	1.086204	2.491957
С	-1.777546	2.967215	0.277659
С	-2.970877	2.772202	-0.397926
Н	-3.487697	3.616086	-0.84481
Н	-1.383297	3.972524	0.373912
С	-0.654274	-1.777669	-0.105879
Н	-1.479628	-1.692319	-0.814226
Н	-0.828547	-2.704381	0.452786
С	1.023817	3.335044	1.241621
Н	0.459269	4.236038	1.504102
Н	1.878085	3.294752	1.923185
С	1.557472	3.496304	-0.233942
С	1.725761	2.153154	-0.909388
Н	2.477091	4.088703	-0.204591
Н	0.832933	4.077976	-0.809955
С	2.736683	1.228384	-0.534016
С	0.710489	1.698649	-1.723534

С	2.571202	-0.162184	-0.795205
С	3.890363	1.665444	0.201148
С	0.487029	0.323877	-1.880678
Н	-0.042056	2.393849	-2.082488
С	3.675424	-1.060938	-0.48897
С	1.307868	-0.611979	-1.282637
С	4.847952	0.801759	0.608754
Н	3.988656	2.720139	0.433183
Н	-0.449977	0.002603	-2.327179
С	4.786593	-0.583135	0.249564
С	3.73943	-2.385903	-0.977523
С	0.692736	-1.948658	-0.886799
Н	5.707895	1.153722	1.171492
С	5.848457	-1.454748	0.566492
С	4.793457	-3.218356	-0.670404
Н	1.386939	-2.491582	-0.246447
Н	0.49843	-2.595716	-1.750994
С	5.85044	-2.758831	0.129898
Н	6.68112	-1.067973	1.147617
Н	6.676807	-3.418652	0.37477
С	-5.651318	-2.19873	-0.262921
С	-3.358603	-1.837838	1.27733
С	-4.106904	-2.989732	1.403288
Н	-3.817853	-3.739928	2.132557
С	-5.250443	-3.19039	0.605538
Н	-5.826308	-4.105459	0.697345
Н	-6.55631	-2.319177	-0.852208
Н	-2.503394	-1.687681	1.925506
Н	4.812376	-4.229377	-1.065285
Н	2.964622	-2.747337	-1.642006