Supplementary Information

Preparation and Characterization of Transparent Polymeric Electrolyte Containing Ionic Liquid with Long Alkyl Chains for Electroactive Polymers

Yuqing Dong^a, Ka-Wai Yeung^a, Chak-Yin Tang^{a*}, Chi Ho Wong^a, Wing-Cheung Law^a, Gary Chi-Pong Tsui^a, Xiaolin Xie^b

^a Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China

^b School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China

* Corresponding authors

Email address: cy.tang@polyu.edu.hk (Chak Yin Tang), Phone: +852 2766 6608, Fax: +852 2362 5267

Postal address: Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.

1. Performance comparison of iEAPs containing IL

We found that water plays a major role in the actuation performance of the PVA/ILbased iEAPs. For the dehydrated iEAP samples, no obvious deformation was observed (except for PL5-5), due to the constraints of the high viscosity, the large molecular size of C_{10} MIMCl, and a small actuation voltage (2V). The deformation comparison of IL contained iEAPs is summarized in Table S1. The structures of materials in Table S1 are shown in Figure S1.

Electrolyte composition	Mobile ion	Bending direction	Actuation voltage (V)	Average curvature (m ⁻¹)	Reference
PVDF/	$C_{10}MIM^+$	anode	10	~1.00	[1]
C ₁₀ MIMCl	& Cl-		10	1.00	[+]
Nafion/ C ₄ MIMCl	C_4MIM^+	anode	4	~5.06	[2]
Nafion/ C ₂ MIMTf	C_2MIM^+	anode	2.5	3.82	[3]
BC/C ₂ MIMBF ₄	C_2MIM^+		1	~6.60	
BC/		anode	1	~12.50	[4]
C ₂ MIMBF ₄ /MW CNT	C_2MIM^+	anoue	1.5	16.47	[+]
Cellulose/	C1	cathode	2	~4.42	[5]
C ₄ MIMCl	CF		5	~24.95	
Nafion/LiCl/ C ₂ MIMBF ₄	Li ⁺ & C ₂ MIM ⁺	anode	2	~15.13	[6]
Nation/ C ₂ MIMBF ₄	C_2MIM^+			~2.66	LJ
Nation/ C ₂ MIMBF ₄	C_2MIM^+	anode	2	~2.15	[7]
Nafion/ C ₄ MIMCl	C_2MIM^+	anode	2 5	~2.44 ~9.89	[8]
CBC/ C ₂ MIMBF ₄ /MW CNT	C ₂ MIM ⁺ & BF ₄ ⁻	anode	1	12.05	[9]
MFC/ C2MIMBF4	C ₂ MIM ⁺ & BF ₄ ⁻	anode	2	12.40	[10]
CA/ C4MIMBF4/GN	C ₄ MIM ⁺ & BF ₄ ⁻	anode	3	14.18	[11]
PL5-5-0 PL5-5-19.80	Cl-	cathode	2	5.17 40.53	this work

Table S1. Performance comparison of typical IL-containing iEAPs

Figure S1. Structures of IL cations, filler, and polymer matrix

References

[1] R. Mejri, J. Dias, S.B. Hentati, G. Botelho, J. Esperança, C. Costa, S Lanceros-Mendez, Eur. Polym. J., 2016, 85, 445-51.

[2] R. Gonçalves, K. Tozzi, M. Saccardo, A. Zuquello, C. Scuracchio, J Solid State Electrochem., 2020, 24, 1845-56.

[3] Y. Bae, M. Park, M. Kim, S. Hwang, S. Kim, M. Jeon, Thin Solid Films, 2020, 698, 136848.

[4] Y.F. Wang, F. Wang, Y. Kong, L. Wang, Q.C. Li, Smart Mater. Struct., 2022, 31, 025023

[5] Z.Z. Sun, L. Yang, D. Zhang, W.L. Song, Sens. Actuators B Chem., 2019, 283, 579-589.

[6] Lee, S., Hwang, L., Lee, J. Y., Yang, T., Jho, J. Y., Park, J. H., Sens. Actuators B Chem., 2022, 372, 132616.

[7] Wang, H. S., Cho, J., Park, H. W., Jho, J. Y., Park, J. H., J. Ind. Eng. Chem., 2021, 96, 194-201.

[8] Tozzi, K. A., Gonçalves, R., Barbosa, R., Saccardo, M. C., Zuquello, A., Sgreccia,

E., di Vona, M. L., J. Appl. Electrochem., 2022, 1-15.

[9] Wang, F., Wang, L., Wang, Y., Wang, D., Appl. Phys. A, 2022, 128(10), 1-12.

[10] Wang, F., Kong, Y., Shen, F., Wang, Y., Wang, D., Li, Q., Compos. Part B-Eng., 2022, 228, 109436.

[11] Nan, M., Wang, F., Kim, S., Li, H., Jin, Z., Bang, D., Choi, E., Sens. Actuators B Chem., 2019, 301, 127127.