Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

The effect of permanent electric dipoles on the stability and photoelectric properties of MAPbI₃

Liufang Chen¹, Zhihang Zhang¹, Wenjing Zhai¹, Guangyuan Li¹, Lin Huang¹, Xinyu Li¹, Wenhao Zheng¹, Lin. Lin², Xiaohui Zhou¹, Zhibo Yan^{1, a)} and Jun-Ming Liu^{1,3}

¹ National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

² Department of Applied Physics, College of Science, Nanjing Forestry University, Nanjing 210037, China

³ Institute for Advanced Materials, Hubei Normal University, Huangshi 435001, China

a) Author to whom correspondence should be addressed: <u>zbyan@nju.edu.cn</u>

Fig. S1 Time-dependent color changes of the MAPbI₃ films with different P(VDF-TrFE) concentrations, measured in the atmosphere.

Fig. S2 Top-view and cross-sectional (Inset) SEM images, distributions of grain

size, and EDS analysis of the MAPbI₃ films, with the P(VDF-TrFE) concentration of 0 mg/mL (a-c), 1 mg/mL (d-f), 2 mg/mL (g-i), and 5 mg/mL (j-l), respectively.

Fig. S3 XPS spectra of the pure MAPbI3 and 2 mg/mL P(VDF-TrFE) added MAPbI3

films

Fig.S4 Frequent-dependent dielectric constant of the different MAPbI₃ films added by 0, 1, 2, and 5 mg/mL P(VDF-TrFE) respectively.

P(VDF-TrFE)	ε _r	N _{trap}	Mobility	ε _r	N_{trap}	Mobility
Amount		(cm^{-3})	$(cm^2V^{-1}s^{-1})$		(cm^{-3})	$(cm^2V^{-1}s^{-1})$
(mg/mL)	@10 KHz	@10 KHz	@10 KHz	@1 MHz	@1 MHz	@1 MHz
0	37	1.53×10^{17}	3.25×10 ⁻²	20	8.25×10 ¹⁶	6.01×10 ⁻²
1	46	1.48×10^{17}	4.08×10 ⁻²	24	7.70×10^{16}	7.82×10 ⁻²
2	50	1.31×10^{17}	6.68×10 ⁻²	26	6.83×10 ¹⁶	1.28×10 ⁻¹
5	52	1.76×10^{17}	3.61×10 ⁻²	28	9.45×10 ¹⁶	6.71×10 ⁻²

Table1. The dielectric constant, defect density, and carrier mobility of the MAPbI₃ films with different amounts of P(VDF-TrFE) at 10 KHz and 1 MHz, respectively.

P(VDF-TrFF)	$V_{TFL}(\mathbf{V})$	Defect density	Mobility	$V_{2}(V)$	Defect density	Mobility
Amount		$(\times 10^{17} \mathrm{cm}^{-3})$ (>	$(10^{-2} \mathrm{cm}^2 \mathrm{V}^{-1} \mathrm{s}^{-1})$		$(\times 10^{17} \mathrm{cm}^{-3})$	$(\times 10^{-2} \mathrm{cm}^2 \mathrm{V}^{-1} \mathrm{s}^{-1})$
(mg/ml)	Classic	Classic	Classic	New	New	New
0	1.49	1.53	3.25	1.78	1.82	3.25
1	1.16	1.48	4.08	1.28	1.63	4.08
2	0.95	1.31	6.68	1.02	1.41	6.68
5	1.22	1.76	3.61	1.25	1.80	3.61

Table 2. The comparison of trap density and carrier mobility, by using the V_{TFL} obtained with the classic SCLC and new method respectively. The dielectric constant measured at 10 kHz was used.