
1

Electronic Supplementary Information

Effect of molecular ordering on circularly polarized emission from twisted 
mesogenic conjugated polymer

Dong-Min Lee, Gi-Eun Kim, Jae-Hoon Kim * and Chang-Jae Yu *

Department of Electronic Engineering, Hanyang University, Seoul 04763, Korea.

*E-mail: jhoon@hanyang.ac.kr, cjyu@hanyang.ac.kr

1. Light efficiency of OLED depending on direct emission of circularly polarized light

In a conventional OLED for display applications, a circular polarizer is needed to prevent reflection of ambient 
light from a metal cathode. However, use of a circular polarizer can only result in extraction of half the emitted 
light from an OLED panel. Therefore, the maximum efficiency of the light emitted is 50 % at best, even without 
considering other losses such as internal reflection and absorption in the OLED stacks. Direct emission of 
circularly polarized (CP) light from the emitting layer in OLED devices can therefore increase the light efficiency 
without any other functional structure. The degree of CP light is defined by the dissymmetry factor, � =
2(�� − ��) (�� + ��)⁄ , where �� and �� indicate the intensities of left-handed and right-handed CP emission, 
respectively

Fig. S1 Efficiency enhancement of OLED as a function of g value.

The factor g has a value between +2 and -2. The zero g value indicates a light component without any circular 
polarization, whereas +2 and –2 correspond to fully �� and ��, respectively. Also, �� is expressed by the g value, 
�� = (2+ �) 4⁄ , because sum of �� and �� is unity when total intensity is normalized. Therefore, a ratio of the 
efficiency enhancement of OLED under a circular polarizer can be represented by

� =
�

2
× 100 (%)

The maximum g value of 0.49 measured here for EL is applied to OLEDs to improve the light efficiency by 24.5 % 
compared to non-polarized conventional OLEDs that use a common circular polarizer as shown in Fig. S1.

2. DSC data of the F8BT

The phase transition temperature of the F8BT was determined by differential scanning calorimeter (DSC 200 
F3, NETZSCH) performed in a nitrogen atmosphere with heating rates of 10 °C/min as shown in Fig. S2. The 
transition temperature was observed at about 135 °C. Also, several literatures1,2 reported the transition 
temperature of the F8BT to be about 130 °C. As a result, the annealing temperature of 160 °C used here is 
suitable for generation of the twist structure of the F8BT by the chiral dopant.
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Fig. S2 DSC data of the F8BT with heating rates of 10 °C/min. The transition temperature is observed at about 
135 °C.

3. Order parameter and birefringence of the samples with various contact distances

According to a contact distance, the order parameter and the birefringence were estimated by measurement of 
the LPPL spectra under polarisers parallel and perpendicular to the rubbing direction, and measurement of the 
phase retardation with respect to the sample-rotating angle,3 respectively. From the LPPL spectra measured 
under polarisers parallel (�∥) and perpendicular (��) to the rubbing direction, the polarization ratio (��) of the 
LP light is expressed as an intensity ratio of the parallel component to the perpendicular one of LP light (�� =
�∥ ��⁄ ) and the corresponding order parameter is written as � = (�� −1) (�� +2)⁄ .4 Here, intensities of the 
parallel and the perpendicular component were determined at 546 nm. 
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Fig. S3 The LPPL spectra and the phase retardation of the 100-nm-thick F8BT films without chiral dopant on 
the rubbed alignment layer with contact distance of (a) 0, (b) 10, (c) 20, and (d) 30 mm. The spectra (left figures)
were measured under linear polarizer, both parallel (red solid curve) and perpendicular (blue solid curve) to 
the rubbing direction. The measured phase retardation (symbols) of the samples as a function of rotation angle 
using PEM method (right figures). The least-square-fits of the retardation are depicted by red solid line.

To evaluate the birefringence, we used the phase modulation technique by a photoelastic modulator (PEM) has 
been used. Although this method has already been expressed in detail at ESI in Ref. 5, we describe whole 
procedure again. The PEM generates the time-dependent phase shift �(�) = �� cos(��) with an amplitude ��
and a frequency w. Suppose that B depicts the phase retardation of a sample at a certain rotation angle q with 
respect to the optic axis of the PEM under crossed polarizers, the transmitted intensity through the sample and 
the PEM is
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where ��(��), ��(��), and ��(��) denote the zeroth, first and second orders of the Bessel function, respectively. 
To eliminate the dependence of phase retardation � in the zeroth harmonics, we determine the modulation 
amplitude �� so that  ��(��) = 0. By using a lock-in amplifier, we can measure the intensities  �� and �� of the 
first and the second harmonic terms, respectively.

�� =
1

2
��(��) sin(�)

�� =
1

2
��(��) cos(�)

Finally, we can determine the phase retardation � as rotating the sample (rotation angle q) following as,

�(�) = tan�� �
����
����

�

As a result, for a given angle q,  we have measured the �(�) as shown in Fig. 2(a). Now, to determine the phase 
retardation �� of the sample, which is a maximum �(�) at q = 0 (when the optic axis is parallel to that of the 
PEM), the transmitted intensity is modified as
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�
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Here, ��� denotes the dc component of the transmitted intensity. For fitting the phase retardation �� , we can use 
the following equation after comparing the above �(�)1

�(�) = tan�� �
2 sin�� cos(2�)

1 − cos(4�) + {1 + cos(4�)} cos��
�

For the samples prepared with various contact distances, the LPPL spectra under polarisers parallel and 
perpendicular to the rubbing direction and the �(�) values were measured as shown in Fig. S3. 

4. Evaluation of total twisted angle as a function of blending concentration of chiral dopant

For evaluation of total twist angle of the F8BT with chiral dopant layer with 100 nm thickness, we used the 
Mueller matrix analysis incorporating the Stokes parameter.6 We divided the F8BT layer into 10 sublayers of 10 
nm and assumed that the layer rotates continuously and uniformly. The twisted angle of the i-th sublayer is 
expressed as �� = ��(�� �⁄ ), where �� , ��, and d denote the total twisted angle, distance from the hole blocking 
layer, and the film thickness, respectively. Then, the theoretical Stokes parameters using Mueller matrix and 
after passing through the F8BT layer twisted to �� are compared to the measured parameters as shown in Fig. 
S4. All measured Stokes parameters are represented by horizontal black lines, and theoretically calculated 
parameters are represented by open circles.
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Figure S4. The measured Stokes parameters (horizontal black lines), theoretically derived parameters (open 
circles), and the corresponding least-squares-fit (vertical lines). The Stokes parameters were measured 
depending on blending concentration of chiral dopant (6, 9, and 12 wt%) from samples fabricated by controlling 
the contact distance from 10 to 40 mm.

The chiral dopant, R5011, with high helical twisting power (HTP) forms a helical conformation of mesogenic 
polymer. The helical pitch of the twisted layer is inversely proportional to the blending concentration of the 
chiral dopant and represented as � = 1 (��� × �)⁄ , where p and c are the pitch of the twisted stacking and 
concentration of the chiral dopant, respectively.7 The twisted angle is expressed as �� = 2��(��� × �) for a 
given thickness (d) of the F8BT layer. Therefore, the twisted angles have values within a certain range and 
increase consistently depending only on blending concentration of the chiral dopant regardless of molecular 
ordering (Fig. S5). Moreover, the 9.1 mm-1 HTP obtained was found by fitting the average twisted angles.

Figure S5. The twisted angle as a function of blending concentration of chiral dopant, R5011. The empty circles 
represent average values of twisted angles, and the dashed line represents fitted data using the above equation.
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5. Mueller matrix analysis for the g value in PL and EL cases

When light propagates through a birefringent medium, its polarization state is easily described by the Stokes 
vectors. The transformation of the Stokes vectors of a beam of radiation is expressed by the Mueller matrix.8 To 
calculate the g value using the Mueller matrix analysis, we take the assumption used in evaluating the twisted 
angle. We assume that the F8BT layer is continuously and uniformly twisted in the film and divide it into 10 
sublayers of 10 nm.9

In the PL case, the UV light was absorbed, and the visible light was emitted at the j-th sublayer. The emitted light 
passes through the twisted birefringent medium from the j-th sublayer to the 10th sublayer and can be written 
in the form;

��� = ���(Γ, ��)

��

���

���,

where Sj and Sjo depict the Stokes vector of the emitted light at the j-th sublayer and that of the outgoing light, 
respectively, and M(Г, qi) represents the Mueller matrix for the i-th sublayer with a phase retardation Г. The 
Mueller matrix M(Г, qi) is represented as follows:

�(Γ, ��) = �
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0 sin(2��) cos(2��) 0
0 0 0 1

��
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0 0 sin(Γ) cos(Γ)

��

1 0 0 0
0 cos(2��) sin(2��) 0

0 −sin(2��) cos(2��) 0
0 0 0 1

�

= �

1 0 0 0
0 cos�(2��) + sin

�(2��) cos(Γ) cos(2��) sin(2��) {1 − cos(Γ)} sin(2��) sin(Γ)

0 cos(2��) sin(2��) {1 − cos(Γ)} sin�(2��) + cos
�(2��) cos(Γ) −cos(2��) sin(Γ)

0 −sin(2��) sin(Γ) cos(2��) sin(Γ) cos(Γ)

�.

In the EL case, it is important to consider the recombination zone since, unlike for PL, light is emitted only in the 
recombination zone in both directions toward the anode and the cathode. We assumed that linearly polarized 
light is emitted at the j-th sublayer when electron and hole are recombined at the uniformly aligned j-th sublayer. 
The emitted light is propagated with the same probability toward the anode and the cathode. Therefore, the 
emitted light passes through the twisted birefringent medium from the j-th sublayer to the 10th sublayer, and 
the emitted light toward the anode and the cathode can be written as follows:

������ = ���(Γ, ��)

��

���

���,

�������� = ���(Γ, ��)

��

���

����(Γ, ��)

�

���

�

�

�� .

Here, Sanode and Scathode depict the Stokes vectors of the outgoing light to the anode and the cathode, respectively. 
The Mueller matrix for the reverse direction of light can be expressed using transposition of the matrix. 
Therefore, Scathode is calculated by multiplying the matrix representing the medium experienced by the j-th 
sublayer with the matrix representing the medium experienced by the cathode and the reflected light from the 
cathode.

By the definition of the Stokes parameters, intensity IL of the left-handed circular polarization is (�� + ��) 2⁄ , and 
the intensity IR of the right-handed circular polarization is (�� − ��) 2⁄ . Moreover, using the definition of the g 
value, ������ = −2(�� ��⁄ ). In the PL case, we assume that the light was emitted with the same probability at all 
sublayers. Therefore, the final gideal was calculated by averaging over all Sjo. Using all measured parameters such 
as total twisted angle, total thickness, birefringence, and the degree of polarization, the g value can be calculated 
as shown in Fig. 4. In the EL case, we assume that the light emitted at a certain position within the emitting layer 
propagates toward anode or cathode with the same probability. Therefore, the final gideal was averaged over both 
propagating lights toward the anode and cathode. Using all measured parameters such as emitting position (j-
th sublayer), total twisted angle, total thickness, birefringence, and degree of polarization, the g value can be 
calculated as shown in Fig. 4.

6. Evaluating gPL and gEL from CPPL and CPEL spectra
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For various contact distances, the gPL values were determined at 546 nm from the CPPL spectra. Figs. S6 and 7
show the CPPL spectra of the F8BT PL samples prepared with 6 wt% and 9 wt% of R5011, respectively. Order 
parameters according to the contact distance was evaluated from Fig. 3(d) and the corresponding gPL values 
with respect to order parameter were shown in Fig. 4(c). 

Figure S6. The CPPL spectra of the 100-nm-thick F8BT films with 6 wt% of R5011 under LH and RH circular 
polarisers with contact distances of (a) 0, (b) 10, (c) 20, (d) 30, and (e) 40 mm, respectively. Here, the determined 
gPL values at 546 nm were evaluated to be (a) 0.197, (b) 0.206, (c) 0.212, (d) 0.219, and (e) 0.232.

Figure S7. The CPPL spectra of the 100-nm-thick F8BT films with 9 wt% of R5011 under LH and RH circular 
polarisers with contact distances of (a) 0, (b) 10, (c) 20, (d) 30, and (e) 40 mm, respectively. Here, the determined 
gPL values at 546 nm were evaluated to be (a) 0.242, (b) 0.249, (c) 0.258, (d) 0.267, and (e) 0.281.

Similarly, the gEL values were also determined at 546 nm from the CPEL spectra. Figs. S8–10 show the CPEL 
spectra of the F8BT EL samples prepared with 6 wt%, 9 wt%, and 12 wt% of R5011, respectively. Order 
parameters according to the contact distance was evaluated from Fig. 3(d) and the corresponding gEL values 
with respect to order parameter were shown in Fig. 4(d). 
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Figure S8. The CPEL spectra of the 100-nm-thick F8BT films with 6 wt% of R5011 under LH and RH circular 
polarisers with contact distances of (a) 0, (b) 10, (c) 20, (d) 30, and (e) 40 mm, respectively. Here, the determined 
gEL values at 546 nm were evaluated to be (a) 0.237, (b) 0.261, (c) 0.296, (d) 0.311, and (e) 0.337.

Figure S9. The CPEL spectra of the 100-nm-thick F8BT films with 9 wt% of R5011 under LH and RH circular 
polarisers with contact distances of (a) 0, (b) 10, (c) 20, (d) 30, and (e) 40 mm, respectively. Here, the determined 
gEL values at 546 nm were evaluated to be (a) 0.292, (b) 0.329, (c) 0.366, (d) 0.394, and (e) 0.422.
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Figure S10. The CPEL spectra of the 100-nm-thick F8BT films with 12 wt% of R5011 under LH and RH circular 
polarisers with contact distances of (a) 0, (b) 10, (c) 20, (d) 30, and (e) 40 mm, respectively. Here, the determined 
gEL values at 546 nm were evaluated to be (a) 0.378, (b) 0.402, (c) 0.445, (d) 0.463, and (e) 0.490.

We also measured circular dichroism (CD) of the F8BT layer with chiral dopant to confirm that the measured g
value was originated from the twist structure. There is little difference in absorption spectra in LH and RH 
circular polarizers as shown in Fig. S11. Such CD was very small to produce the g value.

Figure S11. Absorption spectra of the twisted F8BT layer under LH and RH circular polarizers and the 
resulting CD.

7. IVL characteristics

The current density(J)-voltage(V)-luminance(L) characteristics of the F8BT with 6 wt% R5011 prepared with 
contact distance of 40 mm was measured by using a spectroradiometer, a programmable power supply, and 
multi-meter. As shown in Figure S12, the maximum efficiency was measured to be 0.38 cd/A, which is much 
lower than that in commercialized emission materials. It should be noted that the efficiency strongly depends 
on the material purity, fabrication environments, and so on.
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Figure S12. IVL characteristics of the F8BT with 6 wt% R5011 prepared with contact distance of 40 mm.
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