Supporting Information

Reduced Graphene Oxide Layers Full of Bubbles for Electromagnetic Interference Shielding

Sufang Yang,^{a, b} Zechao Tao,^{*a, c} Xiangfen Li,^a Jinxing Liu,^a Qingqiang Kong,^a Yelong Tong,^d Junfen Li,^a Zhanjun Liu, ^{*a, c, e}

^a CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of

Sciences, Taiyuan, 030001, China

^b University of Chinese Academy of Sciences, Beijing, 100049, China

^c Dalian National Laboratory for Clean Energy, Dalian, 116023, China

^d China Academy of Space Technology, Beijing, 100049, China

^e Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China

*Corresponding author. CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry,

Chinese Academy of Sciences, Taiyuan, 030001, China

** Corresponding author. CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China

E-mail addresses: taozechao05@sxicc.ac.cn (Z. Tao), zjliu03@sxicc.ac.cn (Z. Liu)

Equations

1 Scherrer equation

$$L_c = \frac{K\lambda}{\beta_{002}\cos\theta_{002}} \tag{S1}$$

Where K is sample shape constant (Cu-target, 0.154 nm), λ is X-ray source wavelength, β is full width at half maximum of the (002) peak, and θ is the Bragg diffractive angle.

2 Cançadó equation

$$L_a = (2.4 \times 10^{-10}) \lambda_{lasur}^4 (\frac{I_D}{I_G})^{-1}$$
(S2)

Where L_a is crystalline sizes, and λ_{laser} is wavelength (532 nm) of laser in Raman testing.

Fig. S1. Photograph of (a) GO-1VC, and (b) rGO-1VC-200.

Fig. S2. SEM images of (a) GO, (b) rGO-90, (c) rGO-200, and (d) rGO-500 cross-sections.

Fig. S3. Photograph of (a) GO and (b) rGO-200.

Fig. S4. (a) SEM image and (b)the pore size histograms of rGO-0.2VC-200.

Fig. S5. (a) SEM image and (b) the pore size histograms of rGO-0.5VC-200.

Fig. S6. (a) SEM image and (b) the pore size histograms of rGO-2VC-200.

Fig. S7. (a) SEM image and (b) the pore size histograms of rGO-3VC-200.

Fig. S8. (a) Pore diameter distribution curves and (b) mercury injection curves of rGO-

xVC-200.

Fig. S9. Porosity of rGO-xVC-200.

Fig. S10. The TG-DTG-DSC analysis of GO and GO-1VC.

Fig. S11. The TG-DTG analysis of VC.

Fig. S12. The FT-IR of VC.

Fig. S13. C 1s XPS spectra of (a) GO and (b) rGO-1VC.

Fig. S14. C 1s XPS spectra of (a) rGO-200 and (b) rGO-1VC-200.

Fig. S15. C 1s XPS spectra of rGO-500.

Fig. S16. O 1s XPS spectra of (a) GO and (b) GO-1VC.

Fig. S17. O 1s XPS spectra of (a) rGO-200 and (b) rGO-1VC-200.

Fig. S18. O 1s XPS spectra of rGO-500.

Fig. S19. (a) SE_A and (b) SE_R of rGO-90, rGO-200, rGO-500, rGO-1VC-90, and rGO-1VC-

200.

Fig. S20. The average SE values of rGO-1VC-200-C.

Fig. S21. The average SE values of rGO-1VC-200-P.

Fig. S22. (a-b) SEM image and the pore size histograms of rGO-1VC-200-P.

Fig. S23. The average SE values of rGO-1VC-200 and rGO-1000.

Fig.S24. (a) Pore diameter distribution curves and (b) mercury injection curves of rGO-

500, rGO-1000 and rGO-1VC-200.

Fig. S25. (a) SE_A and (b) SE_R of rGO-xVC-200.

Samples	Thickness (mm)	Density (g cm ⁻³)
GO	0.080	1.40
rGO-90	0.100	1.27
rGO-200	0.380	0.20
rGO-500	0.400	0.15
GO-1VC	0.141	0.73
rGO-1VC-90	0.212	0.51
rGO-1VC-200	1.346	0.06
rGO-0.2VC-200	0.432	0.14
rGO-0.5VC-200	1.025	0.08
rGO-2VC-200	1.109	0.13
rGO-3VC-200	0.901	0.12

Table S1 Thickness and bulk density of all samples

Samples2 Theta (degree)d(002) (Å)FWHM (degree)Lc (nm)lp/lgLa (nm)GO13.746.440.611341.4213.54rGO-9014.885.950.85951.5612.32rGO-20020.644.302.82291.8010.68rGO-50024.903.570.91901.7810.80GO-1VC16.045.526.45121.2515.38rGO-1VC-9024.873.589.0291.4912.90							
GO13.746.440.611341.4213.54rGO-9014.885.950.85951.5612.32rGO-20020.644.302.82291.8010.68rGO-50024.903.570.91901.7810.80GO-1VC16.045.526.45121.2515.38rGO-1VC-9024.873.589.0291.4912.90	Samples	2 Theta (degree)	d ₍₀₀₂₎ (Å)	FWHM (degree)	L _c (nm)	I _D /I _G	L _a (nm)
rGO-9014.885.950.85951.5612.32rGO-20020.644.302.82291.8010.68rGO-50024.903.570.91901.7810.80GO-1VC16.045.526.45121.2515.38rGO-1VC-9024.873.589.0291.4912.90	GO	13.74	6.44	0.61	134	1.42	13.54
rGO-20020.644.302.82291.8010.68rGO-50024.903.570.91901.7810.80GO-1VC16.045.526.45121.2515.38rGO-1VC-9024.873.589.0291.4912.90	rGO-90	14.88	5.95	0.85	95	1.56	12.32
rGO-50024.903.570.91901.7810.80GO-1VC16.045.526.45121.2515.38rGO-1VC-9024.873.589.0291.4912.90rGO-1VC-9025.902.474.909714.49	rGO-200	20.64	4.30	2.82	29	1.80	10.68
GO-1VC 16.04 5.52 6.45 12 1.25 15.38 rGO-1VC-90 24.87 3.58 9.02 9 1.49 12.90 rOO-1VO-90 25.00 2.47 4.00 97 4.70 14.40	rGO-500	24.90	3.57	0.91	90	1.78	10.80
rGO-1VC-90 24.87 3.58 9.02 9 1.49 12.90	GO-1VC	16.04	5.52	6.45	12	1.25	15.38
	rGO-1VC-90	24.87	3.58	9.02	9	1.49	12.90
rGU-1VG-200 25.62 3.47 4.62 87 1.72 11.18	rGO-1VC-200	25.62	3.47	4.62	87	1.72	11.18

 Table S2 Structural values of Raman and XRD spectra.

Table S3 Elemental analysis of all samples

Samplas		C/O				
Samples	N	С	Н	S	0	- 0/0
GO	0	48.09	2.42	0.58	41.38	1.16
rGO-90	0	64.02	1.48	0.31	40.08	1.60
rGO-200	0	76.69	0.63	0.13	20.72	3.70
rGO-500	0	86.91	0.75	0	11.27	7.71
GO-1VC	0	46.01	3.41	0.17	43.78	1.05
rGO-1VC-90	0	44.90	3.17	0.23	29.02	1.55
rGO-1VC-200	0	73.41	1.61	0	15.10	4.86

Samples	Electrical conductivity (S cm ⁻¹)	SE _T (dB)	SE _A (dB)	SE _R (dB)	SE _T /ρ (dB cm³ g⁻¹)
GO	-	-	-	-	-
rGO-90	0.004	0.42	0.39	0.03	0.34
rGO-200	6.02	18	12	6	87
rGO-500	42.70	36	26	10	237
GO-1VC	10.64	-	-	-	-
rGO-1VC-90	22.47	13	31	12	85
rGO-1VC-200	60.61	70	60	10	1167
rGO-0.2VC-200	46.90	42	31	11	300
rGO-0.5VC-200	52.66	60	49	11	750
rGO-2VC-200	17.93	61	51	9	469
rGO-3VC-200	17.02	50	40	10	417

Table S4 The electrical conductivity and EMI SE of all samples.

 Table S5 EMI SE comparison of various shielding materials.

Number	Samples	The preparation methods	EMI SE (dB)	Density (g cm ⁻³)	SET/ρ (dB cm³ g⁻¹)	Reference
1	rGO-1VC-200	Chemical reduction without template (200 °C)	70	0.06	1167	This work
2	MXene/RGO scaffolds	3D printing followed thermal annealing at 500 °C	79	0.145	483	1
3	$Ti_3C_2T_x$ MXene film	Thermal annealing at 500 °C	57.8	2.57	22.59	2
4	C ₆₀ /CD complex	Thermal annealing at 360 °C	53.52	1.914	28	3
5	CNF mat	The wet papermaking method	52-81	0.13-0.22	370-470	4
6	Multilayered MWNTs	Chemical vapor deposition (700 °C)	19.2	1.72	32.98	5
7	CNT film	High temperature at 1000 °C and acid treament	101.4	1.39	72.9	6
8	graphene film	HI reduction and annealing at 3000 °C	130	1.63	79.75	7

9	Graphene/carbon nanotubes	HI reduction and annealing at 2800 °C	75	1.06	70.75	8
10	CNF-PS foams	Sacrificial template method	20.51	0.62	33.1	9
11	CH-rGO foam	Freeze-drying followed hydrazine monohydrate reduction vapor	42	0.061	688.5	10
12	CNT sponges	Chemical vapor deposition and vacuum-assisted impregnationwf	56	0.01	5480	11
13	MPBC-18	Thermal annealing (800 °C) and impregnation	95.67	0.32	298.97	12
14	Foamed Cu-Ni- CNT composite	Sacrificial template and electrophoretic deposition method	54.6	0.23	237.4	13
15	PIF-WS	One-pot liquid foaming process	3.8	0.016	216-249	14
16	SF-EP-CNT4	Wet-chemical deposition and foaming method	68.1	0.61	111.66	15
17	MWCNT/Ag NWs/MWCNT film	Vacuum-assisted filtration	72.1	0.97	74.33	16
18	PI/rGO foam	In situ polymerization, nonsolvent induced phase separation and thermal imidization	21	0.022	937	17
19	3D rGO-GNP	A facile foaming route (1500 °C)	94	1.1	85.5	18
20	PU/GO foam	Solution dip-coating and hydrazine monohydrate reduction	199~57.7	0.030	663.3~1923.3	19
21	CF/graphene aerogels	Freeze drying and annealed at 1000 °C	~42.5	0.0028	16890	20
22	TPU/RGO composite foams	Foaming method	21.8	~0.7	~31.14	21

Number	samples	Thickness (mm)	Density (g cm ⁻³)	S-band (dB)	C-band (dB)	X-band (dB)	Ku-band (dB)	Reference
1	rGO-1VC-200	1.346	0.06	54	63	70	73	This work
2	SF-EP-CNT4	2	0.61	77	73	68	72	15
3	CF/graphene aerogels	2.83	0.0028	-	-	~43	~45	20
4	GR:1000	5	0.006	-	-	40	I	22
5	GF@PDMS	4.5	69.2	-	-	36	i	23
6	Graphene hybrid film	0.160	-	-	-	29	24	24
7	rGO composites	2	-	~7	~10	~8	~7	25
8	TPU/G film	0.050	-	-	~15	~18	~20	26
9	PMMA/CNT	0.57	-	-	-	~14	~18	27
10	Graphene foam	0.3	0.06	-	-	25	~27	28
11	NBR/GN	6	-	~46	~50	~70	-	29
12	APD MXene- based aerogels	2	18	-	-	65	67	30
13	C-MXene/SA- CNTfilms	0.009	-	-	-	60	~62	31
14	MS-based hydrogels	2	-	-	-	~47	~57	32

Table S6 The EMI shielding performance of various shielding materials in a broad

bandwidth.

Reference

1 Y. Dai, X. Wu, L. Li, Y. Zhang, Z. Deng, Z.Z. Yu, H.B. Zhang, 3D printing of resilient, lightweight and conductive MXene/reduced graphene oxide architectures for broadband electromagnetic interference shielding, *J. Mater. Chem. A*, 2022, **10**, 11375-11385.

2 C. Xiang, R. Guo, S. Lin, S. Jiang, J. Lan, C. Wang, C. Cui, H. Xiao, Y. Zhang, Lightweight and ultrathin TiO₂-Ti₃C₂TX/graphene film with electromagnetic interference shielding, *Chem. Eng. J.*, 2019, **360**, 1158-1166. 3 K. Qian, S. Li, J. Fang, Y. Yang, S. Cao, M. Miao, X. Feng, C_{60} intercalating Ti_3C_2T MXenes assisted by γ -cyclodextrin for electromagnetic interference shielding films with high stability, *J. Mater. Sci. Technol.*, 2022, **127**, 71-77.

4 X. Hong, D.D.L. Chung, Carbon nanofiber mats for electromagnetic interference shielding, *Carbon*, 2017, **111**, 529-537.

5 D.W. Lee, H. Kim, J.H. Moon, J.H. Jeong, H.J. Sim, B.J. Kim, J.S. Hyeon, R.H. Baughman, S.J. Kim, Orthogonal pattern of spinnable multiwall carbon nanotubes for electromagnetic interference shielding effectiveness, *Carbon*, 2019, **152**, 33-39.

6 Y.J. Wan, X.Y. Wang, X.M. Li, S.Y. Liao, Z.Q. Lin, Y.G. Hu, T. Zhao, X.L. Zeng, C.H. Li, S.H. Yu, P.L. Zhu, R. Sun, C.P. Wong, Ultrathin Densified Carbon Nanotube Film with "Metal-like" Conductivity, Superior Mechanical Strength, and Ultrahigh Electromagnetic Interference Shielding Effectiveness, *ACS Nano*, 2020, **14**, 14134-14145.

7 E. Zhou, J. Xi, Y. Liu, Z. Xu, Y. Guo, L. Peng, W. Gao, J. Ying, Z. Chen, C. Gao, Large-area potassium-doped highly conductive graphene films for electromagnetic interference shielding, *Nanoscale*, 2017, **9**, 18613-18618.

H. Jia, Q.Q. Kong, X. Yang, L.J. Xie, G.H. Sun, L.L. Liang, J.P. Chen, D. Liu, Q.G.
Guo, C.M. Chen, Dual-functional graphene/carbon nanotubes thick film: Bidirectional thermal dissipation and electromagnetic shielding, *Carbon*, 2021, **171**, 329-340.

9 Y. Yang, M.C. Gupta, K.L. Dudley, R.W. Lawrence, Novel carbon nanotubepolystyrene foam composites for electromagnetic interference shielding, *Nano Lett.*, 2005, **5**, 2131-4. 10 Y. Yuan, L. Liu, M. Yang, T. Zhang, F. Xu, Z. Lin, Y. Ding, C. Wang, J. Li, W. Yin, Q. Peng, X. He, Y. Li, Lightweight, thermally insulating and stiff carbon honeycomb-induced graphene composite foams with a horizontal laminated structure for electromagnetic interference shielding, *Carbon*, 2017, **123**, 223-232.

11 D. Lu, Z. Mo, B. Liang, L. Yang, Z. He, H. Zhu, Z. Tang, X. Gui, Flexible, lightweight carbon nanotube sponges and composites for high-performance electromagnetic interference shielding, *Carbon*, 2018, **133**, 457-463.

12 G. Wang, D. Lai, X. Xu, Y. Wang, Lightweight, stiff and Heat-Resistant Bamboo-Derived carbon scaffolds with gradient aligned microchannels for highly efficient EMI shielding, *Chem. Eng. J.*, 2022, **446**, 136911.

13 K. Ji, H. Zhao, J. Zhang, J. Chen, Z. Dai, Fabrication and electromagnetic interference shielding performance of open-cell foam of a Cu–Ni alloy integrated with CNTs, *Appl. Surf. Sci.*, 2014, **311**, 351-356.

14 J. Ma, K. Wang, M. Zhan, A comparative study of structure and electromagnetic interference shielding performance for silver nanostructure hybrid polyimide foams, *RSC Adv.*, 2015, **5**, 65283-65296.

15 Y. Xu, Y. Li, W. Hua, A. Zhang, J. Bao, Light-Weight Silver Plating Foam and Carbon Nanotube Hybridized Epoxy Composite Foams with Exceptional Conductivity and Electromagnetic Shielding Property, *ACS Appl. Mater. Interfaces*, 2016, **8**, 24131-24142.

16 Z. Wang, Q.Q. Kong, Z.L. Yi, L.J. Xie, H. Jia, J.P. Chen, D. Liu, D. Jiang, C.M. Chen, Electromagnetic interference shielding material for super-broadband: multi-

walled carbon nanotube/silver nanowire film with an ultrathin sandwich structure, J. Mater. Chem. A, 2021, **9**, 25999-26009.

17 Y. Li, X. Pei, B. Shen, W. Zhai, L. Zhang, W. Zheng, Polyimide/graphene composite foam sheets with ultrahigh thermostability for electromagnetic interference shielding, *RSC Adv.*, 2015, **5**, 24342-24351.

18 J. Li, X. Zhao, W. Wu, X. Ji, Y. Lu, L. Zhang, Bubble-templated rGO-graphene nanoplatelet foams encapsulated in silicon rubber for electromagnetic interference shielding and high thermal conductivity, *Chem. Eng. J.*, 2021, **415**, 129054.

19 B. Shen, Y. Li, W. Zhai, W. Zheng, Compressible Graphene-Coated Polymer Foams with Ultralow Density for Adjustable Electromagnetic Interference (EMI) Shielding, *ACS Appl. Mater. Interfaces*, 2016, **8**, 8050-8057.

20 Y.J. Wan, P.L. Zhu, S.H. Yu, R. Sun, C.P. Wong, W.H. Liao, Ultralight, superelastic and volume-preserving cellulose fiber/graphene aerogel for high-performance electromagnetic interference shielding, *Carbon*, 2017, **115**, 629-639.

21 Q. Jiang, X. Liao, J. Li, J. Chen, J. Yi, Q. Yang, G. Li, Flexible thermoplastic polyurethane/reduced graphene oxide composite foams for electromagnetic interference shielding with high absorption characteristic, *Composites Part A*, 2019, **123**, 310-319.

22 M. González, J. Baselga, J. Pozuelo, Modulating the electromagnetic shielding mechanisms by thermal treatment of high porosity graphene aerogels, *Carbon*, 2019 **147**, 27-34.

23 H. Li, L. Jing, Z.L. Ngoh, R.Y. Tay, J. Lin, H. Wang, S.H. Tsang, E.H.T. Teo,

Engineering of High-Density Thin-Layer Graphite Foam-Based Composite Architectures with Superior Compressibility and Excellent Electromagnetic Interference Shielding Performance, *ACS Appl. Mater. Interfaces*, 2018, **10**, 41707-41716.

L. Ma, Z. Lu, J. Tan, J. Liu, X. Ding, N. Black, T. Li, J. Gallop, L. Hao, Transparent
Conducting Graphene Hybrid Films To Improve Electromagnetic Interference (EMI)
Shielding Performance of Graphene, *ACS Appl. Mater. Interfaces*, 2017, 9, 3422134229.

25 B. Wen, X.X. Wang, W.Q. Cao, H.L. Shi, M.M. Lu, G. Wang, H.B. Jin, W.Z. Wang, J. Yuan, M.S. Cao, Reduced graphene oxides: the thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world, *Nanoscale*, 2014, **6**, 5754-61.

26 B. Shen, Y. Li, D. Yi, W. Zhai, X. Wei, W. Zheng, Strong flexible polymer/graphene composite films with 3D saw-tooth folding for enhanced and tunable electromagnetic shielding, *Carbon*, 2017, **113**, 55-62.

K. Hayashida, Y. Matsuoka, Electromagnetic interference shielding properties of polymer-grafted carbon nanotube composites with high electrical resistance, *Carbon*, 2015, 85, 363-371.

28 B. Shen, Y. Li, D. Yi, W. Zhai, X. Wei, W. Zheng, Microcellular graphene foam for improved broadband electromagnetic interference shielding, *Carbon*, 2016, **102**, 154-160.

29 A.A. Al-Ghamdi, A.A. Al-Ghamdi, Y. Al-Turki, F. Yakuphanoglu, F. El-Tantawy,

Electromagnetic shielding properties of graphene/acrylonitrile butadiene rubber nanocomposites for portable and flexible electronic devices, *Composites, Part B*, 2016, **88**, 212-219.

30 N. Wu, Y. Yang, C. Wang, Q. Wu, F. Pan, R. Zhang, J. Liu, Z. Zeng, Ultrathin Cellulose Nanofiber Assisted Ambient-Pressure-Dried, Ultralight, Mechanically Robust, Multifunctional MXene Aerogels, *Adv. Mater.*, 2022, e2207969.

31 B. Li, Y. Yang, N. Wu, S. Zhao, H. Jin, G. Wang, X. Li, W. Liu, J. Liu, Z. Zeng, Bicontinuous, High-Strength, and Multifunctional Chemical-Cross-Linked MXene/Superaligned Carbon Nanotube Film, *ACS Nano*, 2022, **16**, 19293-19304.

32 Y. Yang, N. Wu, B. Li, W. Liu, F. Pan, Z. Zeng, J. Liu, Biomimetic Porous MXene Sediment-Based Hydrogel for High-Performance and Multifunctional Electromagnetic Interference Shielding, *ACS Nano*, 2022, **16**, 15042-15052.