Supplemental Material of:

P-type Ohmic contact to MoS₂ via binary compound electrodes

Yin-Ti Ren,^{1,2,3} Yuan-Tao Chen,³ Liang Hu,³ Jiang-Long Wang,² Peng-Lai Gong,² Hu Zhang,² Li

Huang,^{3,*} and Xing-Qiang Shi^{2,*}

¹ Harbin Institute of Technology, Harbin 150080, China

² College of Physics Science and Technology, Key Laboratory of Optic-Electronic Information and

Materials of Hebei Province, Institute of Life Science and Green Development, Hebei University,

Baoding 071002, China

³ Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China *E-mail: shixq20hbu@hbu.edu.cn, huangl@sustech.edu.cn

FIG. S1. The projected band structure of CuS slab with Hubbard U = 5 eV. The projected band structures of (a) P(Cu) surface (Cu1S1) and (b) F(Cu-S) surface (Cu2S2) in the CuS slab. The Fermi level was set to zero.

FIG. S2. The structure of CuS/MoS₂ junctions. (a) and (b) are top view and side view of P(S)/monolayer MoS₂ junction, (c) and (d) are top view and side view of P(Cu)/monolayer MoS₂ junction, (e) and (f) are top view and side view of F(Cu-S)/monolayer MoS₂ junction, (g) and (h) are top view and side view of F(Cu-S)/bilayer MoS₂ junction, and (i) and (j) are top view and side view of F(Cu-S)/trilayer MoS₂ junction, respectively. The dashed black line indicate the supercell of CuS/MoS₂ junctions.

F(Cu-S)/few-layer MoS_2 junctions. As shown in Figs. S3(a) and S3(c), the band structures of bilayer and trilayer MoS_2 with a $(\sqrt{13} \times \sqrt{13})R13.9^\circ$ supercell show an indirect band gap of 1.22 and 1.11 eV, respectively, which are in good agreement with that in the literature.¹ From monolayer to few-layer, the decrease of band gap originates from the quasi-bonding interactions between MoS_2 layers, which are significant for many layered 2D materials if the band edges of monolayer have out-of-plane orbitals that contribute to the interlayer quasi-bonding.²⁻⁴

FIG. S3. Band structures of few-layer MoS₂ and the Schottky barrier heights in F(Cu-S)/few-layer MoS₂ junctions. The band structures of (a) bilayer and (c) trilayer MoS₂ with a $(\sqrt{13} \times \sqrt{13})$ R13.9° supercell. The projected band structures of (b) bilayer MoS₂ in F(Cu-S)/bilayer MoS₂ junction and (d) trilayer MoS₂ in F(Cu-S)/trilayer MoS₂ junction. Φ_p represent the *p*-type SBH of holes. The Fermi level was set to zero.

Table SI. Vertical separation (D) between the outer atoms of MoS₂ and F(Cu-S) surface, work function of the F(Cu-S) surface (^{W}M) and the F(Cu-S) surface with MoS₂ adsorption (^{W}MS), interface potential step induced SBH correction ($^{\Delta}V$), QBIGS induced SBH correction ($^{\Delta}QB$), and SBH ($^{\Phi}SB$) in the F(Cu-S)/MoS₂ junction from the projected band structure. In the $^{\Phi}SB$ values, *p* means *p*-type Schottky barrier.

D	W_{M}	W _{MS}	ΔV	Δ_{QB}	Φ_{SB}
(Å)	(eV)	(eV)	(eV)	(eV)	(eV)
2.66		5.31	0.20	0.52	0.18
2.76		5.30	0.21	0.47	0.23
2.86	5.51	5.29	0.22	0.41	0.31
2.96		5.26	0.25	0.34	0.37
3.06		5.26	0.25	0.28	0.42

REFERENCES

1 T. Brumme, M. Calandra, F. Mauri. Phys. Rev. B, 2015, 91, 155436.

2 Y. D. Zhao, J. S. Qiao, P. Yu, Z. X. Hu, Z. Y. Lin, S. P. Lau, Z. Liu, W. Ji, Y. Chai. *Adv. Mater.*, 2016, **28**, 2399-2407.

3 D. D. Wang, X. G. Gong, J. H. Yang. *Nanoscale*, 2021, **13**, 14621-14627.

4 P. L. Gong, F. Zhang, L. F. Huang, H. Zhang, L. Li, R. C. Xiao, B. Deng, H. Pan, X. Q. Shi. J. Phys.: Condens. Matter, 2018, **30**, 475702.