Supporting information

Enhancement of photoluminescence modulation ratio in highly transparent KNN-based ceramics for optical information storage

Yaqi Wang^a, Pengkun Guo^a, Yanan Wang^a, Nengmeng Huo^b, Ruyi Sun^a, Yongcheng Zhang^a, Jun-Cheng Zhang^b, and Yalin Qin^{a,*}

^a College of Physics, Key Laboratory of Photonics Materials and Technology in Universities of

Shandong, Qingdao University, Qingdao 266071, PR China. E-mail: yalinqin@qdu.edu.cn

^b Faculty of Information Science and Engineering, Ocean University of China, Qingdao 266100, PR China

Fig. S1 (a) Absorption coefficient spectra of KNN-*x*Pr ceramics (t = 0.045 cm). (b) The plots of $(\alpha hv)^2$ vs. *hv*, and the energy band gap (E_g).

The relationship between $E_{\rm g}$ and photon frequency follows the Tauc equation:^{1, 2}

$$(\alpha h\nu)^2 = A(h\nu - E_g)$$

where *h* is the Planck's constant (4.1357×10⁻¹⁵ eV), A is a constant, *v* is the photon frequency, and α is the absorption coefficient. *v* and α can be calculated according to the following equations:

$$\nu = \frac{c}{\lambda}$$
$$\alpha = \frac{1}{t} \ln(\frac{1}{T})$$

where c, t, λ , and T correspond to the speed of light (3.0×10⁸ m/s), sample thickness, wavelength, and transmittance, respectively. When plotting $(\alpha hv)^2$ versus hv and extending the linear part of the curve to $(\alpha hv)^2 = 0$, the intersection point on the horizontal axis is E_g .

Fig. S2 (a) XRD patterns of the KNN-*x*Pr (x = 0, 1.0, 2.0, 2.5 and 3.0) ceramics. (b) Magnification of peaks at $2\theta \sim 44-47^{\circ}$.

Sample	Density (g/cm ³)					Averag e	Theoretica l	Relative
	No. 1	No. 2	No. 3	No. 4	No. 5	density (g/cm ³)	density (g/cm³)	densities (%)
<i>x</i> = 1.0	4.49	4.52	4.35	4.56	4.47	4.46	4.52	98.7
x = 2.0	4.51	4.49	4.52	4.52	4.54	4.52	4.55	99.3
<i>x</i> = 2.5	4.53	4.48	4.52	4.58	4.53	4.53	4.56	99.3
x = 3.0	4.61	4.46	4.55	4.57	4.54	4.55	4.57	99.6

Table S1. Average density and relative density of KNN-xPr ceramics

Fig. S3 SEM images of fractured surfaces for the KNN-xPr ceramics.

Fig. S4 The dependence of transmittance on heating and illumination time of KNN-2Pr ceramics. (a) Transmittance after 395 nm illumination for different illumination times (0, 10, 20, 30 and 60 s), (b) Transmittance after 150°C heating for different heating times (0, 30, 60, 90 and 120 s) (illuminated by 395 nm for 1 min).

As shown in Fig. S4, when the irradiation time is more than 10 s and the heating time is more than 60 s, the change of transmittance becoming not very large. In order to ensure sufficient time, we chose the illumination time of 30 s and a heating time of 60 s.

Fig. S5 PL spectra under 450 nm excitation in KNN-*x*Pr ceramics before and after 395 nm light illumination for 30 s.

Fig. S6 Changes of ΔR_L in KNN-*x*Pr ceramics when implementing 395 nm illumination (30 s) and thermal stimulus (150°C for 1 min) alternately for 10 cycles.

References

- 1 Y. Li, Y. Tang, F. Wang, X. Zhao, J. Chen, Z. Zeng, L. Yang and H. Luo, *Appl. Phys. A*, 2018, **124**, 1-5.
- 2 J. Lin, J. Xu, C. Liu, Y. Lin, X. Wu, C. Lin, X. Zheng and C. Chen, *J. Alloys Compd.*, 2019, **784**, 60-67.