## **Supporting Information**

Blue-light-excitable pure and efficient short-wave infrared luminescence via  $Cr^{3+} \rightarrow Yb^{3+}$  energy transfer in  $KYbP_2O_7:Cr^{3+}$ phosphor

Ruiqi Shi, Shihai Miao, Yi Zhang, Xulong Lv, Dongxun Chen, Yanjie Liang\*

Key Laboratory for Liquid-Solid Structure Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China

\*Corresponding author: Yanjie Liang

E-mail: yanjie.liang@sdu.edu.cn



Fig. S1 EDS spectrum of the  $KYbP_2O_7:0.01Cr^{3+}$  phosphor.



Fig. S2 Calculated Kubelka-Munk absorption spectrum.



Fig. S3 Excitation and emission spectra of the KYbP<sub>2</sub>O<sub>7</sub>.



Fig. S4 Excitation and emission spectra of the KYbP<sub>2</sub>O<sub>7</sub>:0.01Cr<sup>3+</sup> phosphor at 77 K.



**Fig. S5** Photoluminescence spectra of the KYbP<sub>2</sub>O<sub>7</sub>:xCr<sup>3+</sup> (x = 0.005-0.10) phosphors upon 490 nm excitation.



Fig. S6 Luminescence decay curves and the fitting data of the KYbP<sub>2</sub>O<sub>7</sub>:xCr<sup>3+</sup> phosphor ( $\lambda_{ex} = 490$  nm,  $\lambda_{em} = 1007$  nm). All the decay curves can be fitted by a single exponential function.



**Fig. S7** The excitation line of  $BaSO_4$  and the emission spectrum of the  $KYbP_2O_7:0.01Cr^{3+}$  phosphors collected using an integrating sphere. The inset shows a magnification of the emission spectrum. The internal quantum efficiency (IQE) refers to the ratio of the emitted photons to the absorbed photons, which can be calculated by the following equation:

$$\eta_{IQE} = \frac{\int L_S}{\int E_R - \int E_S} \times 100\%$$

where  $L_S$  is the emitted photons of the sample,  $E_S$  is the number of photons of the light to excite the sample and  $E_R$  is the numbers of the reflected photons of BaSO<sub>4</sub> reference. The measured IQE is determined to be 51.4%.

The absorption efficiency refers to the percentage of the ratio of absorbed photons of the sample to the photons of the excitation light, which can be calculated by the following equation:

$$AE = \frac{\int E_R - \int E_S}{\int E_R}$$

The external quantum efficiency (EQE) refers to the ratio of the number of emitted photons of the sample to the number of photons of the light to excite the sample:  $EQE = IQE \times AE \times 100\%$ 

The measured QE, AE, and EQE of the  $KYbP_2O_7:0.01Cr^{3+}$  phosphor are determined to be 51.4%, 17.1%, and 8.8%, respectively.



Fig. S8  $(a_1-e_1)$  Visible images taken by a digital camera under indoor ambient light.  $(a_2-e_2)$  SWIR images taken by a SWIR camera under the illumination of the fabricated SWIR LED.



**Fig. S9** Transmission photographs of the veins in the palm taken with a digital camera under indoor ambient light (a) and a SWIR camera under the illumination of the fabricated SWIR LED (b).

| Formula             |                | KYbP <sub>2</sub> O <sub>7</sub> |                  |
|---------------------|----------------|----------------------------------|------------------|
| Crystal system      |                | monoclinic                       |                  |
| Space group         |                | $P2_{1}/c$                       |                  |
| Cell parameters     | a = 7.5490 Å   | b = 10.8264 Å                    | c = 8.5466  Å    |
|                     | Alpha = 90     | Beta = 106.714                   | Gamma = 90       |
| Cell volume         |                | 668.991 Å <sup>3</sup>           |                  |
| Reliability factors | $R_p = 5.18\%$ | $R_{wp}=7.89\%$                  | $\chi^2 = 5.988$ |
| Atom                | Х              | У                                | Z                |
| Yb                  | 0.23307        | 0.09613                          | 0.75138          |
| Κ                   | 0.81974        | 0.31524                          | 0.43526          |
| P1                  | 0.13493        | 0.40198                          | 0.81268          |
| P2                  | 0.44901        | 0.35395                          | 0.69187          |
| O1                  | 0.12562        | 0.41023                          | 0.9836           |
| O2                  | 0.06791        | 0.26758                          | 0.72500          |
| O3                  | 0.01747        | 0.50908                          | 0.71483          |
| O4                  | 0.33688        | 0.44025                          | 0.80655          |
| O5                  | 0.34406        | 0.37694                          | 0.51565          |
| O6                  | 0.63183        | 0.41278                          | 0.74493          |
| 07                  | 0.46204        | 0.21687                          | 0.73402          |

**Table S1.** Refined structural parameters and cell parameter values of $KYbP_2O_7:0.01Cr^{3+}$  phosphor from Rietveld refinement.