Supporting information

High optical and thermal stable carbon dots enabled by thermal

treatment for laser illumination

Xinghua Liu^a, Lingpeng Yan^{b, c}, Jingxia Zheng^{a, c}, Yongzhen Yang^{a, c*},

Xuguang Liu^{b, c*}, Bingshe Xu^{a, c}

^a Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China

^b College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China

^c Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China

Corresponding author: yyztyut@126.com (Yongzhen Yang);

liuxuguang@tyut.edu.cn (Xuguang Liu)

Fig. S1. XRD patterns of DHN, CA, and CDs-ht

Fig. S2. TEM images of CDs-300

Fig. S3. High resolution C 1s XPS spectra of (a) CDs-ht,

(b) CDs-150, (c) CDs-200, and (d) CDs-250

Fig. S4. (a) The simulation model; (b) The number of DHN molecules and their decomposition products; (c) Evolution curves of the number of different molecules and temperature as a function of simulation time; (d) The number of CA and DHN molecules and the number of C atoms for the largest molecule as a function of simulation time

Fig. S5. PL emission spectra of (a) CDs-ht, (b) CDs-150, (c) CDs-200, and (d) CDs-250 under

different excitation wavelengths

Fig. S6. PL intensity of CDs-ht, CDs-150, CDs-200, and CDs-250 under

(a) continuous irradiation for 90 min under 450 nm and (b) different temperatures (from 25 to 75

°C with an interval of 10 °C)

Fig. S7. PL intensity of (a) CDs-ht, (b) CDs-150, (c) CDs-200, and

(d) CDs-250 under different pH

Fig. S8. PL intensity of (a) CDs-ht, (b) CDs-150, (c) CDs-200, and (d) CDs-250 under different metal ion solutions

Fig. S9. (a-e) CD model with different structures; (f-j) Corresponding periodic boxes

Fig. S10. (a) Transmittance and (b) UV-vis spectra of four CD films; (c-f) PL emission spectra of

CD film under different excitation wavelengths

Fig. S11. PL intensity of stability of (a) CDs-ht film, (b) CDs-150 film, (c) CDs-200 film, and(d) CDs-250 film under 450 nm laser irradiation for 30 min

Laser wavelength (nm)	Phosphors	CIE coordinate	CCT (K)	CRI	Ref.
400	CDs and lanthanide complexes	(0.31, 0.32)			[12]
405	GQDs	(0.34, 0.39)	5288	70	[24]
450	LuAG/CASN		5600±300	84	[51]
450	Nitride phosphor	(0.33, 0.32)	5362	85	[7]
455	CASN/LuAG	_	8665	89	[20]
450	CDs	(0.42, 0.35)	2822	85	This work

Table S1 WLD performance based on different laser wavelength and phosphors