Thermal-stability Synergy Improvement of Sm^{3+} and Eu^{3+} in

Ca_{3.6}In_{3.6}(PO₄)₆: the Effect of Local Symmetry

Rong-Rong Wang,^{1,2} Gui-Hua Li, ^{1,2} Ge-Mei Cai^{*,1,2}

¹School of Materials Science and Engineering, Central South University, Changsha 410083,

Hunan, P. R. China

²Science Center for Phase Diagram & Materials Design and Manufacture, Central South

University, Changsha 410083, Hunan, P. R. China

Figure S1 The XRD magnification in 2-Theta range between 29.2° and 30° in **Figure 1(a).**

Table S1 Rietveld refinement for the $CI_{1-x}P$: $0.05Eu^{3+}$, $CI_{1-y}P$: $0.04Sm^{3+}$, and $CI_{1-x-y}P$: $0.05Eu^{3+}$, $0.04Sm^{3+}$.

Formula	Ca _{3.420} Eu _{0.180} In _{3.6} (PO ₄) ₆	Ca _{3.456} Sm _{0.144} In _{3.6} (PO ₄) ₆	$Ca_{3.276}Sm_{0.144}Eu_{0.180}In_{3.6}(PO_4)_6$
Sample	Multi-crystal powder	Multi-crystal powder	Multi-crystal powder
R _B (%)	6.31	6.49	5.70
Rp (%)	7.37	7.32	7.10
R _{WP} (%)	9.76	9.74	9.36
S	2.20	2.28	2.36
Symmetry	Triclinic	Triclinic	Triclinic
Space group	P ¹ (No.2)	P ¹ (No.2)	P ¹ (No.2)
a (Å)	6.5001(1)	6.4977(1)	6.5047(1)
b (Å)	9.1903(1)	9.1973(1)	9.1753(1)

^{*}The corresponding author. E-mail address: caigemei@csu.edu.cn (G.M. Cai)

c (Å)	9.2899(1)	9.2798(1)	9.3149(1)
α (°)	110.9844(6)	110.9799(7)	111.0247(6)
β (°)	101.3658(7)	101.3440(8)	101.3663(7)
γ (°)	108.2570(7)	108.2461(8)	108.2853(7)
V (Å ³)	461.17(1)	460.99(1)	461.67(1)
Z	2	2	2
Calculated density (g/cm ³)	4.08	4.08	4.10

 Table S2 Atomic parameters for CI_{1-x}P: 0.05Eu³⁺.

Atom	Х	у	Z	Wyck.	OCC.	U (Å ²)
01	0.1752(19)	0.7248(16)	0.0380(14)	2i	1	0.0007
O2	0.4064(20)	0.1730(15)	0.390(1)	2i	1	0.0007
03	1.1097(17)	0.7683(13)	-0.4379(11)	2i	1	0.0023
O4	0.0233(16)	0.0092(6)	0.2042(14)	2i	1	0.0103
05	0.968(2)	0.4963(15)	-0.6788(15)	2i	1	0.0075
O6	0.874(3)	0.7464(15)	-0.6694(15)	2i	1	0.0183
O7	0.409(3)	0.8389(17)	0.3151(11)	2i	1	0.0584
08	0.400(2)	0.0747(17)	0.1173(15)	2i	1	0.0103
09	0.232(2)	0.2886(7)	0.1871(5)	2i	1	0.0425
O10	0.520(2)	0.7880(17)	0.0663(16)	2i	1	0.0325
011	0.6840(12)	0.5330(15)	-0.5720(12)	2i	1	0.0243
012	0.655(2)	0.4576(6)	-0.1365(6)	2i	1	0.0435
P1	0.2611(9)	0.1284(7)	0.2199(6)	2i	1	0.0007
P2	0.9076(9)	0.6348(6)	-0.5954(6)	2i	1	0.0047
P3	0.3519(9)	0.7083(7)	0.1387(6)	2i	1	0.0012
Cal	0.2186(8)	0.8298(6)	0.8401(5)	2i	1	0.001
Ca2	0.2624(14)	0.9953(12)	0.4977(10)	2i	0.80000	0.068
In1	0.8271(3)	0.7242(2)	0.0669(2)	2i	0.95498	0.017
Eu1	0.8271(3)	0.7242(2)	0.0669(2)	2i	0.04502	0.017
In2	0.6469(4)	0.4382(3)	-0.3853(2)	2i	0.75496	0.0082
Eu2	0.6469(4)	0.4382(3)	-0.3853(2)	2i	0.04488	0.0082

Atom	Х	У	Z	Wyck.	OCC.	U (Ų)
01	0.1762(18)	0.7206(16)	0.0410(14)	2i	1	0.0024
O2	0.3994(19)	0.1781(15)	0.3928(10)	2i	1	0.0024
03	1.1076(17)	0.7705(13)	-0.4301(11)	2i	1	0.0024
O4	0.0332(17)	0.0096(6)	0.2060(14)	2i	1	0.0154
05	0.967(2)	0.5018(14)	-0.6860(14)	2i	1	0.0083
06	0.874(3)	0.7444(16)	-0.6730(17)	2i	1	0.0507
O7	0.425(3)	0.8484(17)	0.3215(11)	2i	1	0.0713
08	0.396(2)	0.0685(16)	0.1076(14)	2i	1	0.0024
09	0.234(2)	0.2883(7)	0.1867(5)	2i	1	0.0695
O10	0.514(2)	0.7988(18)	0.0676(17)	2i	1	0.0648
011	0.6886(12)	0.5388(17)	-0.5675(14)	2i	1	0.0638
012	0.346(2)	0.5428(6)	0.1341(5)	2i	1	0.0138
P1	0.2646(9)	0.1305(7)	0.2195(6)	2i	1	0.0077
P2	0.9146(9)	0.6379(6)	-0.5916(7)	2i	1	0.0135
P3	0.3628(10)	0.7153(7)	0.1444(6)	2i	1	0.015
Cal	0.2252(8)	0.8258(6)	0.8409(5)	2i	1	0.0099
Ca2	0.2557(14)	0.9899(11)	0.4943(10)	2i	0.80000	0.0661
Inl	0.8271(3)	0.7256(2)	0.0674(2)	2i	0.98450	0.0194
Sm1	0.8271(3)	0.7256(2)	0.0674(2)	2i	0.01550	0.0194
In2	0.6461(4)	0.4375(3)	-0.3836(2)	2i	0.74350	0.016
Sm2	0.6461(4)	0.4375(3)	-0.3836(2)	2i	0.05643	0.016

Table S4 Atomic parameters for CI_{1-x-y}P: 0.05Eu³⁺, 0.04Sm³⁺.

Atom	Х	у	Z	Wyck.	OCC	U [Ų]
01	0.1511(17)	0.7185(15)	0.0485(14)	2i	1	0.0156
O2	0.4087(20)	0.1793(16)	0.3903(10)	2i	1	0.0178
03	1.1005(16)	0.7564(12)	-0.4408(10)	2i	1	0.0003
04	0.0296(16)	0.0085(6)	0.1854(13)	2i	1	0.0228
05	0.964(2)	0.4907(13)	-0.6874(13)	2i	1	0.0032
06	0.864(2)	0.7316(14)	-0.6894(13)	2i	1	0.0069
07	0.409(3)	0.8264(18)	0.3146(11)	2i	1	0.0987
08	0.3888(19)	0.0702(15)	0.1055(12)	2i	1	0.0047
09	0.222(2)	0.2945(7)	0.1840(5)	2i	1	0.0943
O10	0.529(2)	0.7941(18)	0.0837(17)	2i	1	0.0733
011	0.6843(11)	0.5442(14)	-0.5641(11)	2i	1	0.0063
012	0.356(2)	0.5417(6)	0.1395(6)	2i	1	0.0558
P1	0.2669(9)	0.1434(7)	0.2229(6)	2i	1	0.0198
P2	0.9057(9)	0.6304(6)	-0.5965(6)	2i	1	0.0124
P3	0.3539(10)	0.7130(7)	0.1418(7)	2i	1	0.0353
Cal	0.2232(7)	0.8332(6)	0.8430(5)	2i	1	0.0034
Ca2	0.2554(15)	0.9923(12)	0.4893(11)	2i	0.80000	0.1106
In1	0.8259(3)	0.7255(2)	0.06998(20)	2i	0.91872	0.0349
Eu1	0.8259(3)	0.7255(2)	0.06998(20)	2i	0.03427	0.0349
Sm1	0.8259(3)	0.7255(2)	0.06998(20)	2i	0.04701	0.0349
In2	0.6513(4)	0.4366(3)	-0.3864(2)	2i	0.71925	0.0163
Eu2	0.6513(4)	0.4366(3)	-0.3864(2)	2i	0.05582	0.0163
Sm2	0.6513(4)	0.4366(3)	-0.3864(2)	2i	0.02494	0.0163

х-у	,						
In1 Eu1	012	x, y, z	2.2268	In2 Eu2	011	x, y, z	2.2228
	04	1+x, 1+y, z	2.2331		O11	1-x, 1-y, -1-z	2.2247
	O10	x, y, z	2.2494		O12	x, y, z	2.2423
	09	1-x, 1-y, -z	2.2682		09	1-x, 1-y, -z	2.2789
	01	1+x, y, z	2.3291		05	2-x, 1-y, -1-z	2.2792
	06	x, y, 1+z	2.3333		O2	x, y, -1+z	2.3290
Average			2.2733	Average			2.2628
In1 Sm1	012	1-x, 1-y, -z	2.2325	In2 Sm2	011	1-x, 1-y, -1-z	2.2277
	04	1+x, 1+y, z	2.2353		O11	x, y, z	2.2404
	09	1-x, 1-y, -z	2.2623		012	1-x, 1-y, -z	2.2457
	06	x, y, 1+z	2.3035		09	1-x, 1-y, -z	2.2837
	O10	x, y, z	2.3346		05	2-x, 1-y, -1-z	2.2963
	01	1+x, y, z	2.3417		02	x, y, -1+z	2.3062
Average			2.2850	Average			2.2667
In1 Sm1 Eu1	01	1+x, y, z	2.1739	In2 Eu2 Sm2	011	1-x, 1-y, -1-z	2.2173
	06	x, y, 1+z	2.1756		O11	x, y, z	2.2215
	04	1+x, 1+y, z	2.2170		O12	1-x, 1-y, -z	2.2513
	O10	x, y, z	2.2190		09	1-x, 1-y, -z	2.2591
	012	1-x, 1-y, -z	2.2512		05	2-x, 1-y, -1-z	2.2682
	09	1-x, 1-y, -z	2.2570		02	x, y, -1+z	2.2921
Average			2.2156	Average			2.2516

Table S5 The partial bond lengths (Å) of $CI_{1-x}P$: $0.05Eu^{3+}$, $CI_{1-y}P$: $0.04Sm^{3+}$, and $CI_{1-x}P$: $0.05Eu^{3+}$, $0.04Sm^{3+}$.

Table S6 The D values for $CI_{1-x}P: 0.05Eu^{3+}, CI_{1-y}P: 0.04Sm^{3+}, and <math>CI_{1-x-y}P: 0.05Eu^{3+},$

 $0.04 Sm^{3+}$ phosphors.

D	CI _{1-x} P: 0.05Eu ³⁺	CI _{1-y} P: 0.04Sm ³⁺	$CI_{1-x-y}P: 0.05Eu^{3+}, 0.04Sm^{3+}$
In1	0.0170	0.0182	0.0123
In2	0.0145	0.0127	0.0096
Average	0.01575	0.01545	0.01095

Figure S2 The color purity variation curve for $CI_{1-x}P$: $0.05Eu^{3+}$, $CI_{1-y}P$: $0.04Sm^{3+}$, and $CI_{1-x-y}P$: $0.05Eu^{3+}$, $0.04Sm^{3+}$ phosphors.

Temperature (K)	(x, y)	CTT (K)	color purity (%)
298	(0.6419,0.3544)	7298	90.21
323	(0.6414,0.3547)	7205	90.05
348	(0.6411,0.3549)	7146	89.96
373	(0.6404,0.3554)	7007	89.75
398	(0.6398,0.3559)	6879	89.56
423	(0.6388,0.3567)	6676	89.25
448	(0.6372,0.3580)	6364	88.75
473	(0.6351,0.3595)	6008	88.09
498	(0.6330,0.3609)	5687	87.44
523	(0.6301,0.3626)	5303	86.54
548	(0.6267, 0.3645)	4903	85.48
573	(0.6249,0.3661)	4652	84.90

Table S7 The CIE and color purity of $CI_{1-x}P$: 0.05Eu³⁺ in different temperature.

298 $(0.5906, 0.3956)$ 2217 73.15 323 $(0.5897, 0.3963)$ 2197 72.82 348 $(0.5883, 0.3972)$ 2159 72.33 373 $(0.5870, 0.3981)$ 2129 71.87 398 $(0.5852, 0.3993)$ 2091 71.23 423 $(0.5838, 0.4003)$ 2063 70.72 448 $(0.5820, 0.4015)$ 2031 70.08 473 $(0.5804, 0.4025)$ 2006 69.51 498 $(0.5782, 0.4036)$ 1978 68.74 523 $(0.5743, 0.4060)$ 1933 67.33 573 $(0.5725, 0.4070)$ 1916 66.68	Temperature (K)	(x, y)	CTT (K)	color purity (%)
323 $(0.5897, 0.3963)$ 2197 72.82 348 $(0.5883, 0.3972)$ 2159 72.33 373 $(0.5870, 0.3981)$ 2129 71.87 398 $(0.5852, 0.3993)$ 2091 71.23 423 $(0.5838, 0.4003)$ 2063 70.72 448 $(0.5820, 0.4015)$ 2031 70.08 473 $(0.5804, 0.4025)$ 2006 69.51 498 $(0.5782, 0.4036)$ 1978 68.74 523 $(0.5765, 0.4048)$ 1955 68.11 548 $(0.5743, 0.4060)$ 1933 67.33 573 $(0.5725, 0.4070)$ 1916 66.68	298	(0.5906,0.3956)	2217	73.15
348(0.5883,0.3972)215972.33373(0.5870,0.3981)212971.87398(0.5852,0.3993)209171.23423(0.5838,0.4003)206370.72448(0.5820,0.4015)203170.08473(0.5804,0.4025)200669.51498(0.5782,0.4036)197868.74523(0.5765,0.4048)195568.11548(0.5743,0.4060)193367.33573(0.5725,0.4070)191666.68	323	(0.5897,0.3963)	2197	72.82
373 $(0.5870, 0.3981)$ 2129 71.87 398 $(0.5852, 0.3993)$ 2091 71.23 423 $(0.5838, 0.4003)$ 2063 70.72 448 $(0.5820, 0.4015)$ 2031 70.08 473 $(0.5804, 0.4025)$ 2006 69.51 498 $(0.5782, 0.4036)$ 1978 68.74 523 $(0.5765, 0.4048)$ 1955 68.11 548 $(0.5743, 0.4060)$ 1933 67.33 573 $(0.5725, 0.4070)$ 1916 66.68	348	(0.5883,0.3972)	2159	72.33
398(0.5852,0.3993)209171.23423(0.5838,0.4003)206370.72448(0.5820,0.4015)203170.08473(0.5804,0.4025)200669.51498(0.5782,0.4036)197868.74523(0.5765,0.4048)195568.11548(0.5743,0.4060)193367.33573(0.5725,0.4070)191666.68	373	(0.5870,0.3981)	2129	71.87
423(0.5838,0.4003)206370.72448(0.5820,0.4015)203170.08473(0.5804,0.4025)200669.51498(0.5782,0.4036)197868.74523(0.5765,0.4048)195568.11548(0.5743,0.4060)193367.33573(0.5725,0.4070)191666.68	398	(0.5852,0.3993)	2091	71.23
448(0.5820,0.4015)203170.08473(0.5804,0.4025)200669.51498(0.5782,0.4036)197868.74523(0.5765,0.4048)195568.11548(0.5743,0.4060)193367.33573(0.5725,0.4070)191666.68	423	(0.5838,0.4003)	2063	70.72
473(0.5804,0.4025)200669.51498(0.5782,0.4036)197868.74523(0.5765,0.4048)195568.11548(0.5743,0.4060)193367.33573(0.5725,0.4070)191666.68	448	(0.5820,0.4015)	2031	70.08
498(0.5782,0.4036)197868.74523(0.5765,0.4048)195568.11548(0.5743,0.4060)193367.33573(0.5725,0.4070)191666.68	473	(0.5804,0.4025)	2006	69.51
523(0.5765,0.4048)195568.11548(0.5743,0.4060)193367.33573(0.5725,0.4070)191666.68	498	(0.5782,0.4036)	1978	68.74
548(0.5743,0.4060)193367.33573(0.5725,0.4070)191666.68	523	(0.5765, 0.4048)	1955	68.11
573 (0.5725,0.4070) 1916 66.68	548	(0.5743, 0.4060)	1933	67.33
	573	(0.5725,0.4070)	1916	66.68

Table S8 The CIE and color purity of $CI_{1-y}P$: 0.04Sm³⁺ in different temperature.

Table S9 The CIE and color purity of $CI_{1-x-y}P$: 0.05Eu³⁺, 0.04Sm³⁺ in different temperature.

Temperature (K)	(x,y)	CTT (K)	Color purity (%)
298	(0.6305,0.3646)	5117	86.60
323	(0.6297,0.3653)	4999	86.34
348	(0.6290, 0.3660)	4890	86.11
373	(0.6282, 0.3668)	4770	85.85
398	(0.6270, 0.3679)	4605	85.45
423	(0.6258, 0.3689)	4457	85.07
448	(0.6243, 0.3701)	4285	84.58
473	(0.6226,0.3714)	4105	84.03
498	(0.6202, 0.3729)	3892	83.26
523	(0.6178,0.3749)	3663	82.46
548	(0.6154,0.3764)	3482	81.69
573	(0.6134,0.3781)	3320	81.01