High performance piezoelectric-triboelectric hybrid energy harvester by synergistic design

Dipak Kumar Khatua^{1,2*}, and Sang-Jae Kim^{1,3}

¹Nanomaterials and System Lab, Department of Mechatronics Engineering, Jeju National University, Jeju 632-43, South Korea

²Department of Materials Engineering, Indian Institute of Science, Bangalore- 560013, India

³Research Institute of Energy New Industry, Jeju National University, Jeju 632-43, South Korea

*Corresponding author

Email Id: dipakkh19@gmail.com

Figure S1: Rietveld refinement of the X-Ray powder diffraction (XRPD) patterns of different $BaTiO_3$ specimens – (a) BT-1500 with P4mm space group and (b) BT-cal with P4mm + Pm-3m phase coexistence model. In the figure Yobs implies data points, Ycal signifies calculated pattern using respective space group model and Yobs – Ycal indicates difference plot among observed and calculated patterns.

Tetragonal (P4mm) structural parameters of BT-1500								
Atomic Coordinates	Х	У	Z	Isotropic Thermal Parameters (Å ²)				
Ba	0	0	0	0.02(0)				
Ti	0.5	0.5	0.476(3)	0.03(0)				
01	0.5	0.5	0.012(0)	1.0(0)				
O2	0.5	0	0.520(0)	1.0(0)				
$a = b = 3.9947(1) \text{ Å}; c = 4.0348(5) \text{ Å}; Rp = 9.03; Rwp = 11.6; Rexp = 9.43; \chi^2 = 3.81$								

Table. S1: Refined structural parameters of X-Ray powder diffraction data of BT-1500. Numerical values inside brackets of all the parameters indicate error in the refined value.

Table. S2: Refined structural parameters of X-Ray powder diffraction data of BT-cal. Numerical values inside brackets of all the parameters indicate error in the refined value.

Tetragonal (P4mm) structural parameters of BT-cal								
Atomic	Х	у	Z	Isotropic Thermal				
Coordinates		-		Parameters (Å ²)				
Ba	0	0	0	0.125(0)				
Ti	0.5	0.5	0.526(9)	0.125(0)				
01	0.5	0.5	0.014(0)	1.0(0)				
O2	0.5	0	0.590(0)	1.0(0)				
$a = b = 3.9992(1)$ Å; $c = 4.0329(5)$ Å; $Rp = 7.79$; $Rwp = 11.7$; $Rexp = 5.33$; $\gamma^2 = 4.82$; Phase								
fraction %=55.22(5)								
Cubic (Pm-3m) structural parameters of BT-cal								
Atomic	Х	y	Z	Isotropic Thermal				
Coordinates		-		Parameters (Å ²)				
Ba	0	0	0	0.36(0)				
Ti	0.5	0.5	0.5	0.08(7)				
0	0.5	0.5	0	1.0(0)				
a =b=c= 4.0138(2) Å; Phase fraction %=44.78(9)								

Figure S2: Mechanism of energy generation by mechanical impact on the PEH device shown schematically.

Table. S3: Comparison of electrical output performance of hybrid (TEH + PEH) mechanical energy harvesters from literatures. Emphasize is given to the nature of the composite in the hybrid device.

Ref.	Device structure	Active material/ Surface	Voltage	Current
no.	Device structure	modification type		
1	PVDF hollow pipe	Nanoporous PVDF	105 5 V	16.7µA
	with PDMS valve	hollow pipe	100.0 1	
2	Rectangular	BaTiO ₃ /PDMS/ plain surface	60 V	1 µA
3	Destangular	PVDF/PANI composite	2461	122µA
	Rectangular	with large pores inside	240 V	
	Cantilever	BaTiO ₃ /PDMS/		
4	resonator	microroughness	14 V	4.5 μΑ
		(sandpaper template)		
	Spring type	$Ti_{0.8}O_2$ nanosheets silver		
5	spring type	nanoparticles co-doped	150 V	0.02.11.4
5	contact-separation	BaTiO ₃ /PDMS/ plain	130 V	0.05 μΑ
		surface		
6	C-shaped	PDMS/micropatterned	150 V	3.8 µA
0		PCB/NMF	150 V	
7	Planar device-	Electrospup DVDE fibers	210 V	45 μΑ
	Electrospun	Electrospun P v DP noers		
8	Planar device	Porous PVDF film	200 V	0.5 μΑ
9	Planar deice	ZnO/ Paper/ PMMA	38.4 V	1.3 μA
This	Dlann an darvise	Grain size enhanced	100 V	2 μΑ
work	rianner device	BaTiO3/PDMS		

References

- Z. Yu, M. Chen, Y. Wang, J. Zheng, Y. Zhang, H. Zhou, and D. Li, ACS Appl. Mater. Interfaces, 2021, 13, 26981-26988.
- B. Shi, Q. Zheng, W. Jiang, L. Yan, X. Wang, H. Lia, Y. Yao, Z. Li, and Z. L. Wang, *Adv. Mater.*, 2016, 28, 846-852.
- 3. S. Yu, Y. Zhang, Z. Yu, J. Zheng, Y. Wang, and H. Zhou, Nano Energy, 2021, 80, 105519.
- G. Suo, Y. Yu, Z. Zhang, S. Wang, P. Zhao, J. Li and X. Wang, ACS Appl. Mater. Interfaces, 2016, 8, 34335-34341.
- X Li, Z.H Lin, G Cheng, X Wen, Y Liu, S Niu, and ZL Wang, ACS Nano, 2014, 8, 10674– 10681.
- C. Y. Chen, C. Y. Tsai, M. H. Xu, C. T. Wu, C. Y. Huang, T. H. Lee, and Y. K. Fuh, EXPRESS Polymer Letters, 2019, 13, 533–542.

- T. Huang, C. Wang, H. Yu, H. Wang, Q. Zhang, and M. Zhu, *Nano Energy*, 2015, 14, 226-235.
- P. Bai, G. Zhu, Y. S. Zhou, S. Wang, J. Ma, G. Zhang, and Z. L. Wang, Nano Research, 2014, 7(7), 990-997.
- 9. Q. Nguyen, B. H. Kim, and J. W. Kwon, *Journal of Microelectromechanical Systems*, 2015, **24(3)**, 519-521.