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Figures

Figure S1. Mass variation profiles of LaxSr1–xMnyAl1–yO3 perovskite oxygen carriers during one 

redox cycle comprising thermochemical reduction and subsequent CO2 splitting. The dashed line 

represents the corresponding temperature variation.  
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Figure S2. Reaction rates for (a) O2 evolution and (b) CO evolution derived from mass variation 

during thermochemical reduction and CO2-induced re-oxidation of LaxSr1–xMnyAl1–yO3.
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Figure S3. Amounts of O2 evolved (a) and reduction rates (b) as a function of tolerance factor for 

LaxSr1–xMnyAl1–yO3 oxygen carriers.
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Figure S4. Amounts of CO evolved (a) and re-oxidation rates (b) as a function of critical radius 

for LaxSr1–xMnyAl1–yO3 oxygen carriers.
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Figure S5. Amounts of O2 evolved (a) and reduction rates (b) as a function of critical radius per 

unit cell volume for a series of LaxSr1–xMnyAl1–yO3 oxygen carriers.
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Figure S6. Amounts of O2 evolved (a) and reduction rates (b) as a function of lattice free 

volumes for LaxSr1–xMnyAl1–yO3 oxygen carriers.
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Figure S7. Amounts of CO evolved (a) and re-oxidation rates (b) as a function of lattice free 

volumes for LaxSr1–xMnyAl1–yO3 oxygen carriers.
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Figure S8. Amounts of O2 evolved (a) and reduction rates (b) as a function of specific free 

volumes for LaxSr1–xMnyAl1–yO3 oxygen carriers.
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Figure S9. Amounts of CO evolved (a) and re-oxidation rates (b) as a function of specific free 

volumes for LaxSr1–xMnyAl1–yO3 oxygen carriers.
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Figure S10. Amounts of O2 evolved (a) and reduction rates (b) as a function of B-site 

electronegativities for LaxSr1–xMnyAl1–yO3 oxygen carriers.
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Figure S11. Amounts of O2 evolved (a) and reduction rates (b) as a function of A-site 

electronegativities for LaxSr1–xMnyAl1–yO3 oxygen carriers.
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Figure S12. Amounts of CO evolved (a) and re-oxidation rates (b) as a function of B-site 

electronegativities for LaxSr1–xMnyAl1–yO3 oxygen carriers.
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Figure S13. Amounts of CO evolved (a) and re-oxidation rates (b) as a function of A-site 

electronegativities for LaxSr1–xMnyAl1–yO3 oxygen carriers.
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Figure S14. Amounts of O2 evolved (a) and reduction rates (b) as a function of A-O bond 

energies for LaxSr1–xMnyAl1–yO3 oxygen carriers.



16

Figure S15. Amounts of O2 evolved (a) and reduction rates (b) as a function of B-O bond 

energies for LaxSr1–xMnyAl1–yO3 oxygen carriers.
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Figure S16. Amounts of CO evolved (a) and re-oxidation rates (b) as a function of A-O bond 

energies for a series of LaxSr1–xMnyAl1–yO3 oxygen carriers.
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Figure S17. Amounts of CO evolved (a) and re-oxidation rates (b) as a function of B-O bond 

energies for a series of LaxSr1–xMnyAl1–yO3 oxygen carriers.
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Figure S18. Wide angle powder XRD patterns observed for LaxSr1–xMnyAl1–yO3 series of 

perovskite oxygen carriers recovered after redox cycles comprising thermochemical reduction 

and subsequent CO2 splitting at 1400 °C and 1050 °C respectively. 


