Supporting Information

Cation Synergy in Sr and Al substituted LaMnO₃ during Solar Thermochemical CO₂ Splitting

Mahesh Muraleedharan Nair and Stéphane Abanades*

Processes, Materials and Solar Energy Laboratory, PROMES-CNRS (UPR 8521), 7 Rue du Four

Solaire, 66120 Font-Romeu, France

Email: Stephane.Abanades@promes.cnrs.fr

Figures

Figure S1. Mass variation profiles of $La_xSr_{1-x}Mn_yAl_{1-y}O_3$ perovskite oxygen carriers during one redox cycle comprising thermochemical reduction and subsequent CO₂ splitting. The dashed line represents the corresponding temperature variation.

Figure S2. Reaction rates for (a) O_2 evolution and (b) CO evolution derived from mass variation during thermochemical reduction and CO_2 -induced re-oxidation of $La_xSr_{1-x}Mn_yAl_{1-y}O_3$.

Figure S3. Amounts of O_2 evolved (a) and reduction rates (b) as a function of tolerance factor for $La_xSr_{1-x}Mn_yAl_{1-y}O_3$ oxygen carriers.

Figure S4. Amounts of CO evolved (a) and re-oxidation rates (b) as a function of critical radius for $La_xSr_{1-x}Mn_yAl_{1-y}O_3$ oxygen carriers.

Figure S5. Amounts of O_2 evolved (a) and reduction rates (b) as a function of critical radius per unit cell volume for a series of $La_xSr_{1-x}Mn_yAl_{1-y}O_3$ oxygen carriers.

Figure S6. Amounts of O₂ evolved (a) and reduction rates (b) as a function of lattice free volumes for $La_xSr_{1-x}Mn_yAl_{1-y}O_3$ oxygen carriers.

Figure S7. Amounts of CO evolved (a) and re-oxidation rates (b) as a function of lattice free volumes for $La_xSr_{1-x}Mn_yAl_{1-y}O_3$ oxygen carriers.

Figure S8. Amounts of O_2 evolved (a) and reduction rates (b) as a function of specific free volumes for $La_xSr_{1-x}Mn_yAl_{1-y}O_3$ oxygen carriers.

Figure S9. Amounts of CO evolved (a) and re-oxidation rates (b) as a function of specific free volumes for $La_xSr_{1-x}Mn_yAl_{1-y}O_3$ oxygen carriers.

Figure S10. Amounts of O_2 evolved (a) and reduction rates (b) as a function of B-site electronegativities for $La_xSr_{1-x}Mn_yAl_{1-y}O_3$ oxygen carriers.

Figure S11. Amounts of O_2 evolved (a) and reduction rates (b) as a function of A-site electronegativities for $La_xSr_{1-x}Mn_yAl_{1-y}O_3$ oxygen carriers.

Figure S12. Amounts of CO evolved (a) and re-oxidation rates (b) as a function of B-site electronegativities for $La_xSr_{1-x}Mn_yAl_{1-y}O_3$ oxygen carriers.

Figure S13. Amounts of CO evolved (a) and re-oxidation rates (b) as a function of A-site electronegativities for $La_xSr_{1-x}Mn_yAl_{1-y}O_3$ oxygen carriers.

Figure S14. Amounts of O_2 evolved (a) and reduction rates (b) as a function of A-O bond energies for $La_xSr_{1-x}Mn_yAl_{1-y}O_3$ oxygen carriers.

Figure S15. Amounts of O_2 evolved (a) and reduction rates (b) as a function of B-O bond energies for $La_xSr_{1-x}Mn_yAl_{1-y}O_3$ oxygen carriers.

Figure S16. Amounts of CO evolved (a) and re-oxidation rates (b) as a function of A-O bond energies for a series of $La_xSr_{1-x}Mn_yAl_{1-y}O_3$ oxygen carriers.

Figure S17. Amounts of CO evolved (a) and re-oxidation rates (b) as a function of B-O bond energies for a series of $La_xSr_{1-x}Mn_yAl_{1-y}O_3$ oxygen carriers.

Figure S18. Wide angle powder XRD patterns observed for $La_xSr_{1-x}Mn_yAl_{1-y}O_3$ series of perovskite oxygen carriers recovered after redox cycles comprising thermochemical reduction and subsequent CO₂ splitting at 1400 °C and 1050 °C respectively.