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Materials and methods

Reagents and materials. HAuCl4, CH3COOH, CH3COONa, 1,2-diaminobenzene (OPD), 2,2'-

azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), Acarbose Hydrate were purchased from 

Shanghai Aladdin Biochemical Technology Co., Ltd. Alkaline phosphatase (ALP), sodium L-

ascorbyl-2-phosphate (AAP), ascorbic acid oxidase (AAO) were purchased from Shanghai Maclin 

Biochemical Technology Co., Ltd. α-Glucosidase was purchased from Beijing Biotopped 

Technology Co., Ltd. Sodium hydrogen phosphate dihydrate, sodium dihydrogen phosphate 

anhydrous were purchased from Sun Chemical Technology (Shanghai) Co., Ltd. 3,3',5,5'-

tetramethylbenzidine (TMB) was obtained from Shanghai Adamas Reagent Co., Ltd. Ultrapure 

water (≥18 MΩ, Millipore) was used in all experiments.

Instrumentation. The scanning electron microscopy (SEM) images were conducted using a Hitachi 

SU8010 scanning electron microscope. Transmission electron microscopy (TEM) measurements 

were made on a HITACHI H-8100 EM with an accelerating voltage of 200 kV. Autosorb-IQ 

analyzer was used for the Brunauer–Emmett–Teller (BET) surface area of the samples. All the 

Ultraviolet-visible (UV–vis) absorption spectra were obtained using UV756CRT (China).XPS 

measurement was performed on an ESCALAB-MKII spectrometer (VG Co., United Kingdom) with 

Al Kα X-ray radiation as the X-ray source for excitation. Powder X-ray diffraction (PXRD) patterns 

were obtained using a Rigaku Smart Lab. Fourier infrared spectra (FTIR) were recorded on Nicolet 

is5 (Thermo, USA). Inductively coupled plasma mass spectrometry (ICP-MS) measurements were 

performed on Agilent 725 (USA) to study the loading of Au in Au/UiO-66 according to the 

following formula:

𝐶𝑥(𝑚𝑔/𝑘𝑔) =
𝐶0(𝑚𝑔/𝐿) ∗ 𝑓 ∗ 𝑉0(𝑚𝐿) ∗ 10

‒ 3

𝑚0(𝑔) ∗ 10
‒ 3

=
𝐶1(𝑚𝑔/𝐿) ∗ 𝑉0(𝑚𝐿) ∗ 10

‒ 3

𝑚0(𝑔) ∗ 10
‒ 3

𝑊(%) =
𝐶𝑥(𝑚𝑔/𝑘𝑔)

106
∗ 100%

m0: the quality of samples; V0: volume after digestion; f: dilution ratio; Co: the concentration of Au 

(mg/L); C1: concentration of Au in the stock solution of sample digestion solution (mg/L); Cx: test 

result of Au concentration (mg/kg). 



Fig. S1. SEM and TEM images of UiO-66 particles. (A) SEM image. (B, C) TEM images. 



Fig. S2. Particle size distribution. (A) UiO-66 particles. (B) Au NPs attached on UiO-66 (1.8 wt 
%). (C) 



Fig. S3. Size distribution of Au NPs/UiO-66 (1.8 wt.% Au) characterized by dynamic light 
scattering (DLS). The DLS measurement shows that the hydrodynamic size of Au NPs/UiO-66 is 
approximately 100 nm.



Fig. S4. TEM images of Au NPs. 



Fig. S5. High-resolution XPS spectra of Zr 3d in UiO-66 and Au NPs/UiO-66 particles.



Fig. S6. Digital photograph for the aqueous dispersions (2 mg mL-1) of Au NPs/UiO-66 particles 
with different Au mass loadings based on the ICP-MS results.



Fig. S7. Characterization of the Au NPs/UiO-66 particles with different Au mass loadings. (A) FTIR 
spectra and (B) PXRD patterns for Au NPs/UiO-66 particles with different Au mass loadings.



Fig. S8. The relative activity of different AuNPs/UiO-66 when the reaction content of Au is the 
same. 



Fig. S9. Reusability and stability of Au NPs/UiO-66 nanozyme. (A) TEM image of Au NPs/UiO-
66 nanozyme after 6 times of reaction with TMB in the presence of H2O2. (B) The relative activity 
of Au NPs/UiO-66 nanozyme for 6 consecutive cycles. (C) The relative activity of Au NPs/UiO-66 
nanozyme after storage for different times. 



Fig. S10. The absorbance of ox-TMB under different concentrations of isopropanol. Reaction 
conditions: Au NPs/UiO-66 (0.1 mg mL-1), H2O2 (25 mM), and TMB (0.5 mM) in acetate buffer 
(10 mM, pH 5.0).



Fig. S11. Steady-state kinetic assay of Au NPs/UiO-66 nanozyme. (A) The reaction concentration 
of TMB (0.5 mM) remained the same and the velocity (Abs=652 nm) varied with the concentration 
of H2O2, and (B) the reaction concentration of H2O2 (25 mM) remained the same and the velocity 
(Abs=652 nm) varied with the concentration of TMB. Double reciprocal plots between velocity 
and(C) H2O2 concentration and (D) TMB concentration. Reaction condition: HAc-NaAc buffer (10 
mM, pH 5.0), 0.1 mg mL-1 nanozyme.



Fig. S12. Colorimetric response for AA assay. (A) Kinetic plots of A652 for Au NPs/UiO-66 
catalyzed TMB oxidation in the presence of H2O2 and AA-medicated inhibitory effect on the 
peroxidase-like activity of Au NPs/UiO-66. (curve 1: Au NPs/UiO-66 + H2O2 + TMB + AA. curve 
2: Au NPs/UiO-66 + H2O2 + TMB + AA, note: AA injection after 20 min incubation.). (B) UV-vis 
absorption spectra of the Au NPs/UiO-66-H2O2-TMB system with different concentrations of AA 
(0-150 μM). (C) Linear relationship between absorbance at 652 nm and concentrations of AA. 
Reaction conditions: pH 5, 25 mM H2O2, 0.5 mM TMB, 40 ℃, 0.1 mg mL-1 Au NPs/UiO-66 
nanozyme.



Table S1. The surface areas and pore volumes of UiO-66 and Au@UiO-66 samples. The pore 
size model is “N2 at 77 K on carbon (slit pore, NLDFT equilibrium model)”.

Samples Pore volume (cm3 g–1) Surface area (m2 g–1) Pore width (Mode) (nm)
UiO-66 0.521 922.4 0.822

Au NPs/UiO-66 0.442 783.1 0.785



Table S2. The mass loading of Au in Au NPs/UiO-66 particles at different concentrations of 
HAuCl4. 

HAuCl4 (mM) The load of Au in Au NPs/UiO-66 (wt %)
10 0.7
20 1.4
25 1.8
30 2.1



Table S3. Catalytic parameters comparison of Au NPs/UiO-66, HRP, and different Au-based 
catalysts. 

Catalyst Substrate Km (mM) Vmax (10-8 M·s-

1)

[E]  
(mM)

Kcat (s-1) Reference

HRP H2O2 3.7 8.71 - 1

HRP TMB 0.434 10 - 1

Tyr-Au NPs H2O2 57.84 5.32 0.1 5.32×10--4 2

Tyr-Au NPs TMB 0.024 0.91 0.1 9.1×10--5 2

citrate-Au NPs H2O2 61.34 0.663 0.02 3.315×10--

4

3

citrate-Au NPs TMB 0.11 1.539 0.02 7.695×10--

4

3

D-His@Au NCs H2O2 72 5.55 - 4

D-His@Au NCs TMB 0.41 7.69 - 4

BSA-Au NCs H2O2 16.71 1.302 0.003 4.34×10-3 5

BSA-Au NCs TMB 3.59 0.861 0.003 2.87×10-3 5

Au hydrogel H2O2 19.92 12.8 - - 6

Au hydrogel TMB 0.32 12.30 - - 6

ZnSA-AuAMP 

hydrogel

H2O2 30.53 1.679 - - 7

ZnSA-AuAMP 

hydrogel

TMB 0.36 1.197 - - 7

Au NPs/UiO-66 H2O2 21.915 5.974 0.005 0.012 This work

Au NPs/UiO-66 TMB 0.039 5.453 0.005 0.011 This work

[E] is the molar concentration of Au; Kcat is the catalytic constant, Kcat = Vmax/[E].



Table S4. Comparison of different optical α-Glu assays.
Materials Mode Linear range

(U/mL)
LOD (U/mL)

Reference

Au NRs Colorimetry 2.5-45 0.5 8
SA-Pt/CN Colorimetry 0.01–8 0.0038 9

f-FeNC Colorimetry 0.005–0.04,
0.04–0.1

0.00027 10

pAPG AuNPs Colorimetry 0.05–1.1 0.04 11
CDs Fluorometry 0.01–5.5 0.02 12

b-CDs Fluorometry 0.13–6.7 0.036 13
F-PDA-CoOOH Fluorometry 0.002–0.08 0.00165 14

PBA-CQD Fluorometry 1.14–17.35 0.33 15
b-CDs Fluorometry 0.13–6.7 0.036 13

AgInZnS QDs Fluorometry 0.01–0.16 0.0073 16
Au NPs/UiO-66 Colorimetry 0.005-1.9 0.002 This work



Table S5. Comparison of different optical ALP assays.
Materials Mode Linear range

(mU/mL)
LOD (mU/mL)

Reference

Fe/NC-SAs Colorimetry 0.1-1.5 0.05 17
PB NCs Colorimetry 0.6-6.0 0.23 18
Ir/LMIO Colorimetry 0.39-100 0.39 19

Pd cube@CeO2 Colorimetry 0.1-4 0.07 20
Ag@Au NR Colorimetry 2-20 0.53 21

Ferrocene-based 
substrate

Electrochemistry 1-1000 0.4 22

4-MPBAb-
Au@Ag NPs

SERS 0.5-10 0.1 23

CdS QDs Fluorimetry 0.2-30 0.2 24
b-CD/CQDs Fluorometry 3.4–100 0.9 25

NB co-doped C-
dots

Fluorometry 0.2–6.0 0.16
26

Au NPs/UiO-66 Colorimetry 1.25-37.5 0.14 This work



Table S6. Comparison of different optical ALP assays.
Materials Mode Linear range

(mU/mL)
LOD 

(mU/mL) Reference

C-dots Colorimetry 0.04–8 0.012 27
Au/Ag NCs Fluorometric 5-80 1.72 28
DNA-Au/Ag 

NC
Fluorimetry 10-200 4.8 29

MQDs Fluorimetry 2-40 0.8 30
Carbon dots Fluorimetry 0.04-5 0.017 27

Au NPs/UiO-66 Colorimetry 0.5-10 0.34 This work
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