Supporting Information

In-source Fragmentation of Nucleosides at Electrospray Ionization: Towards More Sensitive and Accurate Nucleoside Analysis

[‡]Yu-Nan Chen¹, [‡]Xu-Yang Shen¹, Yue Yu², Chen-Yu Xue³, Ying-Lin Zhou¹*, Xin-Xiang Zhang¹

1 Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of

Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

2 Institute of Biotechnology Development, Qilu Pharmaceutical, Jinan

3 Key Laboratory of Forensic Toxicology, Ministry of Public security, Beijing, China

- ‡ These authors contributed equally to this work.
- * Tel: +86-10-62754112; Fax: +86-10-62754112; Email: zhouyl@pku.edu.cn.

Contents

Table S1. Calculated free energy of unlabeled and labeled nucleosides protonated at different
sitesS-3
Table S2. Optimization of MS parameters for 5fdC analysis in MRM mode of LC-MS/MSS-4
Table S3. Profiling of nucleosides in RNA of MCF-7 based on ion pairs resulted from ISFS-5
Figure S1. Extracted MS spectra of 5fdC, 5fdC-i-Pr ₂ N and 5fdC-RBHS-6
Figure S2. Structures of Labeling reagents for 5fdCS-7
Figure S3. The labeling reaction of 5fdC labeled with different labeling reagents and the
fragmentation ratioS-8
Figure S4. Structures of different 5fdC species for theoretical calculationS-9
Figure S5. 1-H (400M) and 13-C (600M) spectra of 5-formylcytosine labelled by Et_2N (in CD_3OD)
Figure S6. The fragmentation ratio of deoxyribonucleosides under different MS conditionsS-11
Figure S7. Optimization of LC-MS conditions for 5fdC-RBH analysisS-12
Figure S8. Identification of rC, mrC and rCm based on different original and fragment ionsS-13
Figure S9. Determination of nucleosides and modified nucleosides in total RNAs of MCF-7 cells
based on different original and fragment ionsS-14

Species	G _f (N3) - G _f (O2) (kJ/mol)	Species	G _f - G _f (N1) (kJ/mol)	Species	G _f - G _f (N) (kJ/mol)
5cadC	-18.3785	5fdC- Et ₂ N -N1	0	5fdC-RBH-N ^b	0
5fdC	-22.00169	5fdC- Et ₂ N -N2	-65.32244	5fdC-RBH-O ^b	23.20942
5hmdC	-15.70049	5fdC- Et ₂ N -N3	-29.45811	5fdC-RBH-N1	-26.28126
5mdC	-10.39698	5fdC- Et ₂ N -N4	-27.90907	5fdC-RBH-N-N1	-84.92967
dC	-13.75762	5fdC- Et ₂ N -N5	44.42346		
rC	-15.621725	5fdC- Et ₂ N -N6	44.449715		
mrC	-12.366105	5fdC- $Et_2N - O^b$	8.112795		
rCm	-15.411685	5fdC- Et ₂ N –N ^b	-18.82484		

Table 1. Calculated free energy (G_f) of unlabeled and labeled nucleosides protonated at different sites^a

^{*a*} The protonation sites are shown in Figure S4

 b –O and –N means protonation at O2 or N3 position of the nitrogenous bases

		-		
Precursor	Product	Collision	Collision cell exit	LOD
ion (Q1)	ion (Q3)	energy (CE)	potential (CXP)	(amol)
256.1	140.1	18	10	1250
547.3	431.2	31	11	10
694.3	578.3	25	10	3
347.7	289.6	12	10	30
	Precursor ion (Q1) 256.1 547.3 694.3 347.7	Precursor Product ion (Q1) ion (Q3) 256.1 140.1 547.3 431.2 694.3 578.3 347.7 289.6	Precursor ion (Q1) Product ion (Q3) Collision energy (CE) 256.1 140.1 18 547.3 431.2 31 694.3 578.3 25 347.7 289.6 12	Precursor ion (Q1)Product ion (Q3)Collision energy (CE)Collision cell exit potential (CXP)256.1140.11810547.3431.23111694.3578.32510347.7289.61210

Table S2. Optimization of MS parameters for 5fdC analysis in MRM mode of LC-MS/MS

_	Original ion			Fragment ion		
Туре	Mass	Peak height	RT	Mass	Peak height	RT
rA	268.104	2.02E+09	6.81	136.061	7.46E+07	6.77
mrA	282.118	8.05E+07	10.3	150.077	2.79E+06	10.3
m ^{6,6} rA	296.135	2.76E+07	10.47	164.093	2.40E+06	10.46
rAm	282.118	1.84E+08	10.09	136.061	7.63E+06	10.09
ct ⁶ A	395.132	1.49E+05	11.57	263.089	8.71E+04	11.59
rG	284.099	8.63E+08	5.53	152.057	2.04E+08	5.54
m¹rG	298.115	2.30E+06	9.21	166.072	3.00E+05	9.21
m ⁷ rG	298.115	3.53E+06	3.00	166.072	3.76E+05	3.00
rGm	298.115	1.12E+07	8.29	152.057	2.55E+06	8.29
rC	244.093	1.05E+09	1.48	112.051	2.41E+08	1.48
m⁵rC	258.109	5.33E+06	2.27	126.066	1.25E+06	2.27
rCm	258.109	4.46E+06	3.51	112.051	1.25E+06	3.53
ac⁴C	286.104	1.01E+07	5.55	154.061	5.18E+05	5.55
U	245.077	1.16E+08	2.81	113.035	6.98E+07	2.81
nm⁵U	274.103	2.93E+05	2.68	142.061	2.98E+04	2.66
Ι	269.088	1.22E+05	5.35	137.046	2.76E+05	5.35

Table S3. Profiling of nucleosides in RNA of MCF-7 cells based on ion pairs resulted from ISF

Figure S1. Extracted MS spectra of (a) 5fdC, (b) 5fdC-i-Pr₂N, (c) 5fdC-RBH in LC-MS analysis

Figure S2. Structures of labeling reagents for 5fdC

Figure S3. The labeling reaction of 5fdC labeled with different labeling reagents and the fragmentation ratio

modified C-N3

R₁

R₂

modified C-O2

5fdC-RBH-N 5fdC-RBH-N1 5fdC-RBH-N-N1

Figure S4. Structures of different 5fdC species for theoretical calculation

Figure S5. (a) 1-H NMR (400 M) spectrum of 5fdC-Et₂N (in CD₃OD). δ 8.31 (s, 1H), 7.81 (s, 1H), 6.26 (t, J = 6.3 Hz, 1H), 5.34 (dd, J = 5.4, 4.2 Hz, 1H), 4.39 (dt, J = 6.4, 4.1 Hz, 1H), 3.86 (dd, J = 12.1, 3.1 Hz, 1H), 3.77 (dd, J = 12.2, 3.7 Hz, 1H), 3.66 (d, J = 2.0 Hz, 2H), 3.58 (q, J = 7.0 Hz, 9H), 3.31 (p, J = 1.6 Hz, 24H), 2.42 (ddd, J = 13.7, 6.2, 4.2 Hz, 1H), 2.24 – 2.13 (m, 2H), 2.02 (dt, J = 10.7, 5.7 Hz, 2H), 1.89 (s, 2H), 1.60 (s, 2H), 1.30 (t, J = 7.9 Hz, 18H), 1.17 (t, J = 7.0 Hz, 14H), 0.94 – 0.86 (m, 2H). (b) 13-C NMR (600 M) spectra with DEPT of 5fdC-Et₂N

Figure S6. The fragmentation ratio of deoxyribonucleosides under (a) different spray voltage, (b) different analyte concentration, (c) different temperature of ion transfer capillary, and (d) different background buffer composition

Figure S7. Optimization of LC-MS conditions for 5fdC-RBH analysis

Figure S8. Identification of rC, mrC and rCm based on different original and fragment ions

Figure S9. Determination of nucleosides and modified nucleosides in total RNAs of MCF-7 cells based on different original and fragment ions with Python