Electronic Supplementary Information

Hybridization of helical poly(phenylacetylene)s bearing Lproline tripeptide pendants into silica porous microspheres as a solvent tolerability CSP for liquid chromatography

Jiahe Huang ^a, Zhengjin Zhou ^a, Chunhong Zhang ^{a, b*}, Chao Wang ^{a, b}, Yanli Zhou ^a,

Lijia Liu^{a, b*}, Junqing Li^{a*}, Toshifumi Satoh^c, Yoshio Okamoto^{a,d}

^a Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials

Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, PR China.

^b Yantai Research Institute of Harbin Engineering University, Yantai, 264006, P.R. China.

° Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.

^d Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.

1. Characterization of intermediate products

Fig. S1[†] ¹H-NMR spectra of (a) intermediate product **a** and (b) intermediate product

b.

Fig. S2[†] ¹H-NMR spectra of (a) intermediate product c and (b) intermediate products
d; (c) ¹³C-NMR spectrum of PA-P₃-ee; (d) ESI-MS spectrum of PA-P₃-ee
4-Ethynylbenzoic acid (Fig. S3[†] (a)): ¹H-NMR (500 MHz, CDCl₃, TMS, 20 °C,

ppm): δ = 8.06 (Ar-*H*, 2H), 7.55 (Ar-*H*, 2H), 3.26 (=C*H*, 1H).

PA-APTES (Fig. S3[†] (b)): ¹H-NMR (500 MHz, CDCl₃, TMS, 20 °C, ppm): *δ* = 7.99-7.97 (Ar-*H*, 2H), 7.53-7.51 (Ar-*H*, 2H), 4.40-4.36 (-O-C*H*₂-CH₃, 2H), 1.41-1.37 (- CH₂-C*H*₃, 3H), 0.25 (-Si-(C*H*₃)₃, 9H).

Fig. S3[†] ¹H-NMR spectra of (a) 4-ethynylbenzoic acid and (b) PA-APTES

2 Preparation of homopolymer PPA

The typical procedure for preparing CPA is depicted as follows. PA-P₃-ee (0.20

g, 0.44 mmol), PA-APTES (3.2 mg, 0.0092 mmol), Rh(nbd)BPh₄ (4.56 mg, 0.0087 mmol) and CHCl₃ (15 mL) were added into a flask (50 mL) under a N₂ atmosphere, stirring at 28 °C for 24 h, PPh₃ (5.2 mg, 0.020 mmol) was added into the solutions. The mixture was concentrated, and then dropped it into a lot of n-hexane, a yellow solid CPA was obtained by filtrated. ¹H-NMR (500 MHz, DMSO-*d*₆, TMS, 80 °C, ppm) (Fig. S†4) δ = 7.69-6.71 (aromatic, 4H), 5.92 (main chain, 1H), 4.96-4.11 (-N-C*H*COO-, 3H), 3.72-3.43 (-O-C*H*₃, 3H), 3.39-3.06 (-N-C*H*₂-, 6H), 2.33-1.36 (-C*H*₂-, C*H*₂-, 12H).

Fig. S4[†] ¹H-NMR spectrum of PPA

3 Preparation of SiO₂ porous microspheres (SiO₂ PMS)

A typical procedure for preparing SiO₂ PMS is described as follows. The aqueous solution of tetraethyl orthosilicate (TEOS) was added in a mixture solution (120 mL) of H₂O, ethanol and NH₃·H₂O. The solution was stirred at 25 °C for 6 h to obtained SiO₂ seeds solution. CTAB (6.5 g, 17.84 mmol), H₂O, NH₃·H₂O and SiO₂ seeds solution were mixture at 25 °C. After that, the aqueous solution of TEOS (300 mL) was added into the reaction system stirred at 25 °C for 6 h, the SiO₂ PMS was obtained by centrifuged and vacuum dried at 30 °C for 12 h.

Fig. S5[†] SEM images of SiO₂ seeds prepared in different [TEOS] ([NH₃·H₂O] = 0.8 mol/L, [H₂O] = 3.0 mol/L, T=25 °C): (a): [TEOS]=0.3 mol/L; (b): [TEOS]=0.4 mol/L;
(c): [TEOS]=0.5 mol/L; (d): [TEOS]=0.6 mol/L

Fig. S6[†] SEM images of SiO₂ seeds prepared in different [NH₃·H₂O] ([TEOS] = 0.3 mol/L, [H₂O] = 3.0 mol/L, T=25 °C): (a): [NH₃·H₂O] =0.4 mol/L; (b): [NH₃·H₂O] =0.6 mol/L; (c): [NH₃·H₂O] =0.8 mol/L; (d): [NH₃·H₂O] =1.0 mol/L

Fig. S7[†] SEM images of SiO₂ seeds prepared in different [H₂O] ([NH₃·H₂O] = 1 mol/L, [TEOS] = 0.3 mol/L, T=25 °C): (a): [H₂O] =4 mol/L; (b): [H₂O] =6 mol/L; (c): [H₂O] =8 mol/L; (d): [H₂O] =10.0 mol/L

Fig. S8[†] SEM images of SiO₂ seeds prepared in different temperature ([NH₃·H₂O] = 1 mol/L, [H₂O] = 8 mol/L, [TEOS]=0.3 mol/L): (a): T = 25 °C; (b): T = 30 °C; (c): T = 35 °C; (d): T = 40 °C

Fig. S9[†] SEM images of SiO₂ PMS prepared in different [TEOS] ([NH₃·H₂O] = 1 mol/L, T=25 °C): (a): [TEOS] = 0.3 mol/L; (b): [TEOS] = 0.4 mol/L; (c): [TEOS] =

0.5 mol/L.

Fig. S10⁺ SEM images of SiO₂ PMS prepared in different [NH₃·H₂O] ([TEOS] = 0.4

mol/L, T=25 °C): (a): $[NH_3 \cdot H_2O] = 1 mol/L$; (b): $[NH_3 \cdot H_2O] = 1.5 mol/L$; (c):

 $[NH_3 \cdot H_2O] = 2.0 \text{ mol/L}.$

Fig. S11⁺ XRD patterns of (a) SiO₂ seeds and (b) SiO₂ PMS

Fig. S12[†] The (a) N₂ adsorption–desorption isotherms bights and (b) pore size distribution of SiO₂ PMS

4. Hybridization of CPA into SiO₂ PMS during the growth process of microspheres

Fig. S13[†] TGA curve of HCSP

5. Evaluation of chiral recognition ability of the HCSP

Solvent	MeOH	CHCl ₃	THF	DMF	DMAc	DMSO	H ₂ O	n-hexane
PPA-	++	++	++	++	++	++	++	-
USP HCSP	_	-	_	-	-	_	_	-
nesi								

Table S1[†] Solubility of PPA-CSP and HCSP ^a

^a ++: Soluble; -: insoluble;

HCSP HCSP Racemates (H/I/T=94/5/1)(H/I/T=94/1/5) k_l' Rs k_l' Rs α α 1 0.54(-) ~1 _ 0.43(-)~1 -2 0.58(+)1.28 1.33 0.31(+)1.21 1.28 3 1.29 12.69(+)1.21 9.05(+)1.20 1.25 4 1.95 1.00 0.97 1.00 -_ 5 3.31(+)~1 -2.41(+)~1 -3.41 6 1.00 2.59 1.00 --7 12.36(-) 1.20 1.52 9.75(-) 1.15 1.27 8 10.25(-) 12.98(-) ~1 _ ~1 -

Table S2[†] Resolution of the racemates 1-8 on the HCSP after introducing THF ^a

^a Column: 0.2×25 cm (ID). Flow rate: 0.1 mL/min. The signs in parentheses stand for the optical rotation of the first-eluted enantiomer. Eluent: H, n-hexane; I, isopropanol; T, THF.

Table S3† Compar	ison of the separa	ation factors	(α) for racem	ate 7 on the	commercial
	1		ADC		

columns and HCSP						
Racemate	Daicel	HCSP ^b				
-	AD ^a	AS ^a	OD ^a			
	1.02 (-)	1.25 (-)	2.07 (-)	3.43 (-)		

^a Column: 25 cm ×0.46 cm (ID). Flow rate: 0.1 mL/min. Eluent: hexane/isopropanol (90/10, v/v)
^b Column: 25 cm × 0.2 cm (ID). Flow rate: 0.1 mL/min. Eluent: hexane/isopropanol/CHCl₃ (H/I/C=94/1/5, v/v/v)