Supplemental Information

Ions recognition properties of 2'2-bibenzimidazole regulated by ammonium modified pillar[5]arene

Hong Yao,* Yin-Ping Hu, Hao-Ran Yang, Bao-Hong Yang, Jin-Wang Wang, You-Ming Zhang, Tai-Bao Wei, and Qi Lin*

Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070. P. R. China

* E-mail: yhxbz@126.com, linqi2004@126.com

Table of Contents

Fig. S18 Frontier molecular orbital amplitude plots and electronic properties of HAP5 and G. 15

Fig. S19 The electrostatic potential surface of HAP5 and G.	15
Tab. S6 Comparative result of I- chemosensors	15

16

Tab. S7 Comparative result of HSO4-chemosensors

Scheme S1. Synthesis route of HAP5

Synthesis of compound HAP5

We synthesized compound 1 and 2 according to the literature.^{1, 2} The compound 2 (1.96 g, 1.0 mmol) and trimethylamine (33% in ethanol, 7.20 mL, 30.0 mmol) were added to ethanol (50 mL). The solution was refluxed over night at 80°C. Then the solvent was removed by evaporation, deionized water (20 mL) was added. After filtration, a clear solution was obtained and then the water was removed by evaporation to obtain HAP5 as a white solid (2.56 g, yield 95%). m.p. 217-219°C. ¹H NMR (400 MHz, DMSO-*d*₆), δ /ppm: δ 6.83 (s, 10H), 4.07 (s, 10H), 3.83 (d, J = 8.3 Hz, 10H), 3.70 (s, 10H), 3.59 (s, 20H), 3.17 (s, 90H), 1.90 (d, J = 46.4 Hz, 40H). ¹³C NMR (150 MHz, DMSO-*d*₆.), δ /ppm: 150.12, 129.22, 116.81, 68.46, 65.87, 52.87, 25.78 and 19.46. EMI-MS m/z: calcd for C₁₀₅H₁₉₀N₁₀O₁₀Br₉KNa [HAP5 - Br + K + 3Na]⁵⁺:513.9329, found:513.5933.

Fig. S1 ¹H NMR (400 MHz, 298K) spectra of HAP5 in DMSO- d_6 .

Fig. S2 13 C NMR (150 MHz, 298K) spectra of HAP5 in D₂O.

Fig. S3 ESI-MS spectra of HAP5

$$2 \underbrace{\bigcap_{NH_2}^{NH_2}}_{NH_2} + \underbrace{\bigoplus_{HO}^{OH}}_{O} \underbrace{\begin{array}{c} PPA \\ Glycol, 160^{\circ}C \end{array}} \underbrace{\begin{array}{c} \bigcap_{N}^{N} \underbrace{H}_{N} \\ H \\ H \end{array}}_{N} \underbrace{\begin{array}{c} H \\ H \\ H \end{array}}_{N} + 2 H_2 O$$

Scheme S2. Synthesis route of G

Synthesis of compound G

We synthesized compound **G** according to the literature.³ The amidation reaction was carried out at low temperature by grinding method, and then the ring-closure reaction was completed during reflux. The 1,2-diaminobenzene (7.2 g, 67 mmol), polyphosphoricacid (12 mL) and oxalic acid (4.2 g, 33 mmol) were added to ethylene glycol (50 mL). The solution was refluxed 1.5 h at 160°C. Then cool to room temperature, deionized water (300 mL) was added. After filtration, the product was recrystallized to obtained **G** as a yellow needle-like solid (12.9 g, yield 83.0%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 6.90 (s, 10H), 4.04 (s, 29H), 3.07 (s, 128H), 1.69 (s, 41H). ¹³C NMR (150 MHz, DMSO-*d*₆), δ /ppm: 21.48, 144.19, 172.51. EMI-MS m/z: calcd for C₁₄H₁₀N₄ [G-H]⁻: 234.0905, found: 233.0829.

Fig. S4 ¹H NMR (400 MHz, 298K) spectra of G in DMSO-d₆.

Fig. S5 ¹³C NMR (150 MHz, 298K) spectra of G in DMSO-*d*₆.

Fig. S6 ESI-MS spectra of G

General conditions for fluorescence experiments:

All the fluorescence spectroscopy was carried out in in DMSO/ H_2O (1:1, v/v) solution on a Shimadzu RF-5301 spectrometer. All of the solutions prepared fresh and used it at room temperature.

Fig. S7. Fluorescent spectra of G (2.0×10^{-5} M) in DMSO/H₂O (1:1, v/v) in the presence of cations (10 equiv.).

Fig. S8 (a) Fluorescence spectrum of **G** $(2 \times 10^{-5} \text{ M})$ in the presence of different equivalents of Cu²⁺ in DMSO/H₂O (v/v=1:1) binary solution. (b) Fluorescence spectrum of **G** $(2 \times 10^{-5} \text{ M})$ in the presence of different equivalents of Hg²⁺ in DMSO/H₂O (v/v=1:1) binary solution. (c) Fluorescence spectrum of **G** $(2 \times 10^{-5} \text{ M})$ in the presence of different equivalents of Fe³⁺ in DMSO/H₂O (v/v=1:1) binary solution. (d) Fluorescence spectrum of **G** $(2 \times 10^{-5} \text{ M})$ in the presence of different equivalents of Ag⁺ in DMSO/H₂O (v/v=1:1) binary solution.

Fig. S9 (**a-d**) Fluorescent spectrum linear range for Cu^{2+} , Hg^{2+} , Fe^{3+} , and Ag^+ by addition of various concentrations of Cu^{2+} , Hg^{2+} , Fe^{3+} , and Ag^+ into **G**. (**d-f**) The photograph of the linear range based on Bensi-Hildebrand equation to calculated K_a between Cu^{2+} , Hg^{2+} , Fe^{3+} , and Ag^+ with **G**.

Fig. S10 A plot of fluorescent intensity depending on the concentration of Cu²⁺, Hg²⁺, Fe³⁺ and Ag⁺ in the range from different equivalents: (a) G-Cu²⁺, (b) G-Hg²⁺, (c) G-Fe³⁺ and (d) G-Ag⁺.

Tab. S1 Calculation formula and related date of the detection limits of G for Cu^{2+} , Hg^{2+} , Fe^{3+} and Ag^+ .

Cation	A(Slope)	B(Intercept)	R ²	δ	S	LOD
Cu^{2+}	67.4039	280.6515	0.994	3.683	6.74×10 ⁶	1.64×10-6
Hg^{2+}	23.7610	359.5632	0.996	3.683	2.38×10 ⁷	4.65×10-6
Fe ³⁺	158.1667	351.9419	0.994	3.683	1.58×10 ⁸	6.98×10 ⁻⁷
Ag^+	58.8394	405.9061	0.996	3.683	5.88×10 ⁷	1.88×10-6
Calculation formula	$\delta = \sqrt{\frac{1}{2}}$	$\frac{Liner}{E(F-F)2}$ $\frac{E(F-F)2}{(N-1)}$ L(uation y=A N=20 K= DD=K ×δ/ S	x+ B =3 S=2	A ×10 ⁶	

Compand	Metal ions	A(Slope)	B(Intercept)	R ²	<i>K</i> a/M ⁻¹		
G	Cu^{2+}	1.59	16.59	0.989	1.60×10 ⁷		
G	Hg^{2+}	1.19	9.81	0.990	1.82×10^{4}		
G	Fe ³⁺	1.66	18.59	0.998	1.18×10^{8}		
G	Ag^{+}	1.54	14.06	0.976	1.28×10^{6}		
Calculation formula							
$In \frac{I-Imin}{m}$							
Liner	Equation $y=Ax^{-1}$	+ B	Imax - I = -In	Ka – n In [N	1 ²⁺]		

Tab. S2 Association constants of the **G** treated by Cu^{2+} , Hg^{2+} , Fe^{3+} and Ag^+ , calculation formula and related data.

Fig. S11. Fluorescence titration of G (2.0×10^{-5} M) in DMSO/water aqueous solution system (1:1,

Fig. S12 ¹H NMR spectra of **HAP5** (DMSO– d_6) and in the presence of varying amounts of **G** from 0 equiv. to 2 equiv.

Fig. S13 (a) Fluorescence spectrum of **HG** $(2 \times 10^{-5} \text{ M})$ in the presence of different equivalents of Cu²⁺ in DMSO/H₂O (v/v=1:1) binary solution. (b) Fluorescence spectrum of **HG** $(2 \times 10^{-5} \text{ M})$ in the presence of different equivalents of Hg²⁺ in DMSO/H₂O (v/v=1:1) binary solution. (c) Fluorescence spectrum of **HG** $(2 \times 10^{-5} \text{ M})$ in the presence of different equivalents of Fe³⁺ in DMSO/H₂O (v/v=1:1) binary solution. (d) Fluorescence spectrum of **HG** $(2 \times 10^{-5} \text{ M})$ in the presence of different equivalents of Ag⁺ in DMSO/H₂O (v/v=1:1) binary solution.

Fig. S14 (**a-d**) Fluorescent spectrum linear range for Cu^{2+} , Hg^{2+} , Fe^{3+} , and Ag^+ by addition of various concentrations of Cu^{2+} , Hg^{2+} , Fe^{3+} , and Ag^+ into **HG**. (**d-f**) The photograph of the linear range based on Bensi-Hildebrand equation to calculated K_a between Cu^{2+} , Hg^{2+} , Fe^{3+} , and Ag^+ with **HG**.

Fig. S15 A plot of fluorescent intensity depending on the concentration of Cu²⁺, Hg²⁺, Fe³⁺ and Ag⁺ in the range from different equivalents: (a) HG-Cu²⁺, (b) HG-Hg²⁺, (c) HG-Fe³⁺ and (d) HG-Ag⁺.

Tab. S3 Calculation formula and related date of the detection limits of HG for Cu^{2+} , Hg^{2+} , Fe^{3+} and Ag^+ .

Cation	A(Slope)	B(Intercept)	R ²	δ	S	LOD
Cu ²⁺	2226.40	310.55	0.997	3.694	2.23×10 ⁹	4.96×10 ⁻⁹
Hg^{2+}	64.24	482.75	0.997	3.694	6.42×10 ⁷	1.73×10-7
Fe ³⁺	214.01	294.29	0.998	3.694	2.14×10 ⁸	5.18×10 ⁻⁸
Ag^{+}	133.01	133.01	0.966	3.694	1.33×10 ⁸	8.33×10 ⁻⁸
Calculation formula		$\delta = \sqrt{\frac{\Sigma(F)}{(N)}}$	$\begin{array}{c} Liner Eq\\ \hline -\overline{F})2\\ \hline -1) \\ LC \end{array}$	uation y=, N=20 K D D=K ×δ/S	A x+ B	∆×10 ⁶

Compand	Metal ions	A(Slope)	B(Intercept)	R ²	Ka/M^{-1}	
HG	Cu^{2+}	1.86	25.41	0.992	1.08×10^{11}	
HG	Hg^{2+}	1.43	13.54	0.995	7.59×10 ⁵	
HG	Fe ³⁺	2.57	28.75	0.993	3.06×10^{12}	
HG	Ag^{+}	4.81	48.09	0.965	7.68×10^{20}	
Calculation formula						
$In \frac{I - Imin}{Im \frac{I}{Im \frac{Im Im Im Im Im {Im \frac{I}{Im Im Im Im Im Im Im {Im \frac{Im Im I$						
Liner E	quation y=A x+	- B 1	mux - 1 = -mu	$n^{n} = n^{n}$	u j	

Tab. S4 Association constants of the HG treated by Cu²⁺, Hg²⁺, Fe³⁺ and Ag⁺, calculation

formula and related data.

Fig. S16 (left) Fluorescence spectrum of **HG-Ag**⁺ (2×10^{-5} M, 3.5 equiv. Ag⁺) in the presence of different equivalents of I⁻ in DMSO/H₂O (v/v=1:1) binary solution; (**right**) Fluorescent spectrum linear range for I⁻ by addition of various concentrations of I⁻, into **HG-Ag**⁺.

Fig. S17 (left) Fluorescence spectrum of HG-Cu²⁺ (2×10^{-5} M, 6.5 equiv. Hg²⁺) in the presence of different equivalents of I⁻ in DMSO/H₂O (v/v=1:1) binary solution; (right) Fluorescent spectrum linear range for I⁻ by addition of various concentrations of I⁻ into HG-Cu²⁺.

Tab. S5 Association constants of the **HG-M** ($M = Hg^{2+}$, Ag^+ and Cu^{2+}) treated by I⁻, I⁻, and HSO₄⁻, calculation formula and related data.

Cation	A(Slope)	B(Intercept)	R ²	δ	S	LOD	
HG-Hg ²⁺ -I ⁻	11.65	53.36	0.995	3.683	1.16×10 ⁷	9.48×10 ⁻⁷	
HG-Ag ⁺ -I ⁻	25.12	20.60	0.990	3.683	2.51×10^{7}	4.40×10 ⁻⁷	
HG-Cu ²⁺ -HSO ₄ -	15.33	16.51	0.999	3.683	1.53×10^{7}	7.21×10-7	
		Liner Equ	uation y= A	x+B			
Calculation formula	$\delta = \sqrt{1 + 1}$	$\frac{\Sigma(F-F)2}{(N-1)}$	N=20 K=	=3 S=	A×10 ⁶		
		LO	$D = K \times \delta / S$				
$E_{LUMO} = -1.9013 \text{ eV}$ $\Delta E = 1.4873 \text{ eV}$ $\Delta E = 4.3394 \text{ eV}$ $E_{HUMO} = -3.3886 \text{ eV}$							
Х.Х	HAP5		X	G	↓ E _{HUMO} = -6.0926 eV		

Fig. S18 Frontier molecular orbital amplitude plots and electronic properties of HAP5 and G.

Fig. S19 The electrostatic potential surface of HAP5 and G.

Entry	Compounds of probe	LOD for I ⁻	solvent	Ref.	
1	$HG \Lambda a^+$	4 40×10-7	DMSO/H ₂ O (v/v,	This work	
1	nu-Ag	4.40^10	1/1)	I his work	

Tab. S6 Comparative	result of I-	chemosensors
---------------------	--------------	--------------

2	2	4.74×10-6	THF/H ₂ O (v/v, 9/1)	51
3	1-Ag	5.31×10 ⁻⁶	H_2O	49
4	2	5.20×10-4	THF/H ₂ O (v/v, $2/1$)	52

Tab. S7 Comparative result of HSO₄-chemosensors

Entry	Compounds of probe	LOD for I ⁻	solvent	Ref.
1	$HC Cu^{2+}$	7 21 ×10-7	DMSO/H ₂ O (v/v,	This work
1	no-cu-	7.21~10	1/1)	THIS WOLK
2	1	7 70×10-7	DMSO/H ₂ O (v/v,	50
2 1		7.79^10	1/1)	50
3	1	3.72×10 ⁻⁶	MeOH	53
4	T - Zn^{2+}	3.84×10 ⁻⁶	CH ₃ CN	48

Notes and references

- 1. Q. Lin, Y.-Q. Fan, P.-P. Mao, L. Liu, J. Liu, Y.-M. Zhang, H. Yao and T.-B. Wei, *Chemistry A European Journal*, 2018, **24**, 777-783.
- 2. Q. Lin, L. Liu, F. Zheng, P.-P. Mao, J. Liu, Y.-M. Zhang, H. Yao and T.-B. Wei, *RSC Advances*, 2017, 7, 34411-34414.
- 3. T. Wei, J. Liu, H. Yao, Q. Lin, Y. Xie, B. Shi, P. Zhang, X. You and Y. Zhang, *Chinese Journal* of Chemistry, 2013, **31**, 515-519.