Supporting Information

Molecular Simulation Guided Aptasensor Design of Robust and Sensitive Lateral Flow Strip for Cadmium Ion Detection

Muhammad Irfan^a, Ghulam Murtaza^b, Shangnan Fu^d, Ailiang Chen^{c*}, Feng Qu^{a*}, Xin Su^{d*}

^a Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China

^b School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081 China.

^c Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China

^d College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 China.

* Corresponding authors:

X.S. xinsu@mail.buct.edu.cn

A.C. ailiang.chen@gmail.com

F.Q. <u>qufengqu@bit.edu.cn</u>

Table of contents

Figure S1: Secondary structure based hybridization prediction of aptamer with probe 1

Figure S2: Change in binding affinity of aptamer with probe1 in presence of different concentrations of Cd^{2+} .

Figure S3: *In silico* analysis of Cd²⁺ binding with aptamer.

Figure S 4: Simulations oriented optimization of probe length based upon hybridization yield and ΔG .

Figure S5: Molecular simulations based sequence optimization of selected probe 30 nt.

TableS1: Table of mutated sequences of probe 30 nt for molecular simulations based sequence optimization.

Figure S1: Secondary structure based hybridization prediction of aptamer with probe 1 (lengths 30nts and 16nts). An apparent change in secondary structure influenced by reduced numbers of nucleotides leads to change in ΔG .

Figure S2: Change in binding affinity of aptamer with probe1 in presence of different concentrations of Cd2+. $\Delta\Delta G$ is the change in ΔG when aptamer hybridized with probe1 in abscence of Cd2+ as compared to aptamer/Cd2+ (1,4,8, and 12) complexes bind with prob1.

Figure S3: *In silico* analysis of Cd^{2+} binding with aptamer. Binding of single Cd^{2+} is characterized at the end in form of 2D diagram, which shows tendency of Cd^{2+} toward G and T.

Figure S 4: Simulations oriented optimization of probe length based upon hybridization Yield and ΔG . The simulated presentations of aptamer hybridization with different lengths of probes, showing the conformational changes directly impacted by length which influenced the Δ G that leads to the hybridization yield.

Complex (Apt. and probe)	ANTRE		with the	euster and	Julia	N Mark	June 1	Good
Mutation	Wild Type	1-2	3-4	5-6	7-8	9-10	11-12	13-14
ΔG * (kcal/mol)	-16.72	-16.27	-16.20	-14.80	-15.80	-15.90	-14.88	-15.35
HY * (%)	100	95.50	97.80	73.30	91.90	92.60	75.60	83.00
Complex (Apt. and probe)	ALL AND	En Establish	NAR L	N. Martin	Lange and the second	totigena	www.	A WAR
Mutation	15-16	17-18	19-20	21-22	23-24	25-26	27-28	29-30
ΔG* (kcal/mol)	-11.44	-13.64	-13.47	-13.83	-12.59	-16.01	-16.18	-16.27
HY * (%)	26.10	61.20	59.10	68.60	47.00	80.90	90.00	95.60

 $HY^{\#}$ is hybridization yield.

Figure S5: Molecular simulations based sequence optimization of selected probe 30 nt. The 15 mutated sequences were generated by two consecutive mutations in each sequence starting from 1-2 position till end 29-30. Mutations were made such in a way that a purine is substituted with purine $(A \rightarrow G/G \rightarrow A)$ and pyrimidine with pyrimidine $(T \rightarrow C/C \rightarrow T)$. The molecular simulation complexes are shown along with binding free energies and hybridization yields.

TableS1: Table of mutated sequences of probe 30 nt for molecular simulations based sequence optimization.

No.	Sequence	Mutation	
1.	CCTGACAACACCATAATAAAAACCAACACG	Wild type	
2.	TTTGACAACACCATAATAAAAACCAACACG	1-2	
3.	CCCAACAACACCATAATAAAAACCAACACG	3-4	
4.	CCTGGTAACACCATAATAAAAACCAACACG	5-6	
5.	CCTGACGGCACCATAATAAAAACCAACACG	7-8	
6.	CCTGACAATGCCATAATAAAAACCAACACG	9-10	
7.	CCTGACAACATTATAATAAAAAACCAACACG	11-12	
8.	CCTGACAACACCGCAATAAAAACCAACACG	13-14	
9.	CCTGACAACACCATGGTAAAAAACCAACACG	15-16	
10.	CCTGACAACACCATAACGAAAACCAACACG	17-18	
11.	CCTGACAACACCATAATAGGAACCAACACG	19-20	
12.	CCTGACAACACCATAATAAAGGCCAACACG	21-22	
13.	CCTGACAACACCATAATAAAAATTAACACG	23-24	
14.	CCTGACAACACCATAATAAAAACCGGCACG	25-26	
15.	CCTGACAACACCATAATAAAAAACCAATGCG	27-28	
16.	CCTGACAACACCATAATAAAAACCAACATA	29-30	