TunableGrapheneOxideforLow-FoulingElectrochemical Sensing of UA in Human Serum

Gang Li^a, Chunying Xu^{a, *}, Hui Xu^b, Liju Gan^a, Kai Sun^c, Baiqing Yuan^{a, *}

Fig. S-1 SEM images of (a) GO/GCE, (b) GO-BSA/GCE, (c) GO_{-0.75}/GCE, (d) GO_{-0.75}-BSA/GCE, (e) EHGO/GCE, and (f) EHGO-BSA/GCE.

Fig. S-2 TEM and HRTEM images of (a, e) GO/GCE, (b, f) GO-BSA/GCE, (c, g) GO_{-0.75}/GCE, (d, h) EHGO/GCE.

Fig. S-3 XPS survey spectrum of (a) GO, (b) GO-BSA, (c) GO_{-0.75}, (d) EHGO.

Fig. S-4 O1s XPS spectra of (a) GO, (b) GO_{-0.75}, (c) EHGO, (e) GO-BSA.

Fig. S-5 N1s XPS spectra of (a) GO, (b) GO_{-0.75}, (c) EHGO, (e) GO-BSA.

Fig. S-6 S2p XPS spectra of (a) GO, (b) GO_{-0.75}, (c) EHGO, (e) GO-BSA.

Fig. S-7 CVs of GO/GCE and GO-BSA/GCE in 0.1 M KCl solution in the presence of 5 mM K_3 Fe(CN)₆ at different scan rates. Inset: the linear plot of anodic and cathodic peak currents versus the square root of scan rate.

Fig. S-8 CVs of GO/GCE in 0.1 M PBS (pH = 7.0) at a scan rate of 25 mV s⁻¹ for 30 cycles after scanning in 5 mM $Ru(NH_3)_6Cl_3$.

Fig. S-9 Nyquist diagrams for (a) CNT/GCE, (b) GO/GCE, (c) $GO_{.0.75}/GCE$, (d) GO-BSA/GCE, (e) GO-BSA_{.0.75}/GCE, (f) EHGO/GCE in 0.1 M KCl solution in the presence of 5 mM K₃Fe(CN)₆. The symbols and solid lines present the experimental and the fitted data, respectively. Inset: The amplified Nyquist diagrams. The frequency range of EIS was from 1 MHz to 0.1 Hz at 0.25V.

Fig. S-10 Phase angle diagrams vs log of frequency of Bode plots for (a) CNT/GCE, (b) GO/GCE, (c) GO_{-0.75}/GCE, (d) GO-BSA/GCE, (e) GO-BSA_{-0.75}/GCE, (f) EHGO/GCE. Inset: The electrical equivalent circuit.

Fig. S-11 CVs of (a) CNT/GCE, (b) GO/GCE, (c) $GO_{-0.75}/GCE$, (d) EHGO/GCE in 0.1 M PBS (pH = 7.0) containing 100 μ M UA for 30 cycles at a scan rate of 25 mV s⁻¹.

Fig. S-12 Normalized CV peak current percent of CNT/GCE, GO/GCE, GO_{-0.75}/GCE, and EHGO/GCE in 0.1 M PBS (pH = 7.0) containing 100 μ M UA.

Fig. S-13 DPV responses of 10 μ M UA at (a) GO/GCE, (b) GO-BSA/GCE, and (c) EHGO/GCE before and after immersion in undiluted serum for 1 hour.

Fig. S-14 Successive DPV responses of (a) GO/GCE, (b) GO/GCE, (c) EHGO/GCE in diluted human serum in 0.1 M PBS (pH=7.0). The human serum was diluted two times.

Fig. S-15 DPV responses of (a) GO/GCE, (b) GO-BSA/GCE, and (c) EHGO/GCE in 0.1 M PBS (pH = 7.0) with 10 μ M UA in the presence of 5 mM glucose, 100 μ M AA, and saturated O_{2.} (d) DPV responses of EHGO/GCE in the absence (dotted line) and presence (solid line) of 5 mM glucose.

Fig. S-16 DPV response of EHGO/GCE in the presence of 500 μ M AA, 10 μ M DA, and 20 μ M UA in 0.1 M PBS (pH = 7.0).

Fig. S-17 The corresponding linear calibration plot of peak current versus concentration of UA. Inset: The amplified linear calibration plot.

Fig. S-18 DPV curves of the (a) GO/GCE and (b) EHGO/GCE for different concentrations of UA (From bottom to top: 0; 5; 10; 15 μ M) spiked in diluted human serum in 0.1 M PBS (pH=7.0). Inset: The corresponding calibration curves and error bars. (The human serum was diluted 50-fold.)

Matariala	Demonsterre		C1s						
Materials	Parameters	C=C	C-C	C-S	С-О	С=О	0-C=0		
	Position (eV)	284.66	285.1		286.84	288.0	288.95		
GO	Area	21391	3112		23703	2982	1457		
	percentage	40.6	5.9		45.0	5.7	2.8		
	Position (eV)	284.63	285.2		286.76	288.0	288.95		
EHGO	Area	38399	1723		34091	4031	1895		
	percentage	47.9	2.2		42.5	5.0	2.4		
	Position (eV)	284.62	285.15		286.78	288.0	288.95		
GO _{-0.75}	Area	38027	3171		27911	1349	2423		
	percentage	52.2	4.4		38.3	1.9	3.2		
	Desition (aV)	201 22	295.26	296.01	286.05	207.01	288.91		
	Position (ev)	204.33	285.36	280.01	200.93	207.04	(O-C=O/-CO-NH-)		
UU-BSA	Area	40725	6769	6861	6993	4862	1235		
	percentage	60.4	10.0	10.2	10.4	7.2	1.8		

Table S-1 Fitted parameters for C1s XPS spectra.

 Table S-2 The C/O ratio for C1s XPS spectra.

	Elements	C/O ratio		
	C1s	O1s	C/O latio	
GO	55.80	34.13	1.63	
GO _{-0.75}	71.13	23.97	2.37	
EHGO	64.14	29.99	2.14	
GO-BSA	71.08	18.76	3.79	

Table	S-3	Fitted	parameters	for	O1s	XPS	spectra.
-------	------------	--------	------------	-----	-----	-----	----------

		Ols						
Materials	Parameters	0-C=0	С=0	С-ОН	С-О-С	chemisorbed oxygen and/or water		
	Position (eV)	530.94	531.97	532.68	533.41	535.71		
GO	Area	22864	19643	27373	14971	943		
	percentage	26.6	23.0	31.8	17.5	1.1		
	Position (eV)	530.93	531.95	532.67	533.41	535.55		
EHGO	Area	20467	18612	533.41	10831	1525		
	percentage	20.3	18.4	49.1	10.7	1.5		
	Position (eV)	530.95	531.97	532.68	533.41	535.56		
GO _{-0.75}	Area	10584	12952	20888	17807	1910		
	percentage	16.5	20.2	32.6	27.8	2.9		
	Position (eV)	530.94	531.94	532.67	533.41			
GO-BSA	Area	19981	15921	10063	3391			
	percentage	40.5	32.3	20.4	6.8			

Materi	al/Peak	GO	EHGO	GO _{-0.75}	BSA-GO
	X _c (cm ⁻¹)	1134	1127	1144	1167
D*	W (cm ⁻¹)	300	250	282	331
	A (%)	6	4	6	11
	X _c (cm ⁻¹)	1348	1350	1347	1349
D	W (cm ⁻¹)	144	156	150	149
	A (%)	44	48	47	37
	X _c (cm ⁻¹)	1500	1551	1488	1514
D"	W (cm ⁻¹)	169	214	116	197
	A (%)	10	16	4	16
	X _c (cm ⁻¹)	1578	1565	1572	1578
G	W (cm ⁻¹)	89	78	97	87
	A (%)	21	9	23	15
D'	X _c (cm ⁻¹)	1609	1603	1605	1607
	W (cm ⁻¹)	52	58	55	57
	A (%)	5	7	6	7
	X _c (cm ⁻¹)	2500	2569	2509	2521
G*	W (cm ⁻¹)	43	177	202	146
	A (%)	0.1	3	1	1
	X _c (cm ⁻¹)	2695	2710	2708	2669
2D	W (cm ⁻¹)	255	201	267	197
	A (%)	9	4	7	4
	X_{c} (cm ⁻¹)	2935	2904	2927	2900
D+D'	W (cm ⁻¹)	182	198	176	249
DID	A (%)	4	5	5	6
	X _c (cm ⁻¹)	3179	3129	3156	3165
2D'	W (cm ⁻¹)	154	232	167	250
	A (%)	1	3	2	2

Table S-4 Fitting parameters for GO, GO_{-0.75}, GO-BSA, and EHGO in the Raman spectra.

Mat	erial	GO	EHGO	GO _{-0.75}	BSA-GO
	D*	567	463	530	967
	D	GO EHGO GO5 B * 567 463 530 530 7387 6899 6927 530 530 1558 2152 927 5475 2829 5076 5475 2829 5076 5475 2829 5076 2789 3416 2649 5439 562 670 839 562 670 569 569 569	6451		
	D″	1558	2152	927	2307
Max	G	5475	2829	5076	4364
Max Unight	D'	2789	3416	2649	2709
meight	G*	60	367	120	212
	2D	839	562	670	655
	D+D'	620	776	689	785
	2D'	231	329	281	250

Table S-5 Max Height intensity for some Raman peaks of GO, GO-0.75, GO-BSA,and EHGO.

Table S-6 Integrated area ratio for some Raman peaks of different GO.

Material	I_D/I_G	$I_{D}*/I_{G}$	A_D/A_G	A_D / A_G
GO	1.35	0.10	2.10	0.24
EHGO	2.44	0.16	5.30	0.80
GO _{-0.75}	1.36	0.11	2.07	0.26
BSA-GO	1.48	0.22	2.47	0.39

Electrodes	R1	R2	R3	W1-R	W1-T	W1-P	CPE1-T	CPE1-P	CPE2-T	CPE2-P	СРЕЗ-Т	CPE3-P
CNT/GCE	5.776	115.6		56524	1550	0.3524	5.5788E-8	0.93121	2.2198E-4	0.64281		
GO/GCE	6.535	109.5		293100	36.74	0.38336	2.3555E-8	0.97156	7.2397E-7	0.94851		
GO _{-0.75} /GCE	8.291	90.0		10900	0.46841	0.58	1.6648E-8	1.014	1.5696E-4	0.9		
GO-BSA/GCE	5.12	60.5	63.98	649290	11.23	0.31039	2.6731E-6	0.75595	7.8916E-7	0.9718	1.5856E-8	1.039
GO-BSA _{-0.75} /GCE	5.657	53.57	68.49	16249	0.45395	0.73622	9.8793E-6	0.6705	2.3443E-4	0.88004	9.544E-9	1.07
RHGO	7.87	83.74		119220	16.1	0.52752	1.4885E-8	1.025	6.0418E-7	1.16		

Table S-7 Fitted parameters for EIS of different electrodes.

Flootrodo	Linear range	Detection Limit		
Liectroue	(µM)	(µM)		
CNT/GCE	10-200	0.2		
GO/GCE	0.2-1/1-100	0.02		
GO-0.75/GCE	0.5-20	0.5		
GO-BSA/GCE	0.1-10/10-200	0.1		
GO-BSA-0.75/GCE	0.1-20	0.1		
EHGO/GCE	0.5-20	0.2		

 Table S-8 The linear range and detection limit of different electrodes.

Electrode material	Electrochemical Method	рН	Linear range (µM)	Detection limit (µM)	Ref.
CNP	DPV	7.0	25-2500	0.2	[1]
MC-GO-Fe ₃ O ₄	DPV	7.0	0.5-140	0.17	[2]
Ni@CNRs	DPV	7.0	0.5-30/ 35-100	0.166	[3]
CoPc/GQDs	DPV	7.0	10.76-3003	0.145	[4]
COF/La2O3/MWCNTS	DPV	7.0	0.4-450	0.024	[5]
g-C ₃ N ₄ /MWNTs/GO	DPV	7.0	4-200	1.36	[6]
ERGO/ZnO	DPV	7.0	1-400	0.45	[7]
GQDs	DPV	6.5	10-1000	0.107	[8]
N-rGO	DPV	7.0	1-30	0.2	[9]
GO/AuNR	DPV	7.0	10-90	0.4	[10]
Co ₃ O ₄ -ERGO	DPV	7.0	5-500	1.5	[11]
CNT	DPV	7.0	10-200	0.2	
GO-BSA	DPV	7.0	0.1-10/10-200	0.1	
GO-BSA _{-0.75}	DPV	7.0	0.1-20	0.1	TL:
GO _{-0.75}	DPV	7.0	0.5-20	0.5	I nis work
GO	DPV	7.0	0.2-1/1-100	0.02	
EHGO	DPV	7.0	0.5-20	0.2	

 Table S-9 Comparison of different modified electrodes for electrochemical detection of UA.

1. CNP: carbon material containing nitrogen and phosphorus.¹

2. MC-GO-Fe₃O₄: methylcellulose/graphene oxide/iron oxide nano hydrogel.²

3. Ni@CNRs: Nickel nanoparticles loaded with carbon nanorods.³

4.CoPc/GQDs: cobalt phthalocyanine anchored with graphene quantum dots.⁴

5. COF/La₂O₃/MWCNTS: covalent organic framework and lanthanum oxide and multi-wall carbon nanotubes.⁵

 $6.g-C_3N_4/MWNT_s/GO$: Graphite carbon nitride and multi-walled carbon nanotubes and Graphene oxide.⁶

7.ERGO/ZnO: Electrochemically reduced graphene oxide/zincoxide.7

8. GQDs: graphene quantum dots.⁸

9. N-rGO: Nitrogen-doped reduced graphene oxide.9

10.GO/AuNR: graphene oxide and gold nanorod.¹⁰

11. Co₃O₄-ERGO: Co₃O₄ nanoparticles and electrochemically reduced graphene oxide.¹¹

References

- 1 Y. Huang, Y. Zang, S. Ruan, Y. Zhang, P. Gao, W. Yin, C. Hou, D. Huo, M. Yang and H.-b. Fa, *Microchem. J.*, 2021, 165, 106152.
- 2 E. Sohouli, E. M. Khosrowshahi, P. Radi, E. Naghian, M. Rahimi-Nasrabadi and F. Ahmadi, J. *Electroanal. Chem.*, 2020, 877, 114503.
- 3 B.-T. Liu, X.-Q. Cai, Y.-H. Luo, K. Zhu, Q.-Y. Zhang, T.-T. Hu, T.-T. Sang, C.-Y. Zhang and D.-E. Zhang, *Microchem. J.*, 2021, 171, 106823.
- 4 B. Wu, M. Li, R. Ramachandran, G. Niu, M. Zhang, C. Zhao, Z. Xu and F. Wang, *Adv. Mater. Interfaces*, 2023, 10, 2200738.
- 5 Z. Pan, H. Guo, L. Sun, B. Liu, Y. Chen, T. Zhang, M. Wang, L. Peng and W. Yang, *Colloids Surf. Physicochem. Eng. Aspects*, 2022, 635, 128083.
- 6 H. Wang, A. Xie, S. Li, J. Wang, K. Chen, Z. Su, N. Song and S. Luo, *Anal. Chim. Acta*, 2022, 1211, 339907.
- 7 M. Eryiğit, B. K. Urhan, H. Ö. Doğan, T. Ö. Özer and D. Ü, IEEE Sens. J., 2022, 22, 5555-5561.
- 8 C. Zhao, J. Xiao, T. Liu, H. Shi, Q. Li and Z. J. I. J. E. S. Ruan, Int. J. Electrochem. Sci., 2022, 17, 2.
- 9 A. Elangovan, K. Sudha, A. Jeevika, C. Bhuvaneshwari, P. Kalimuthu and V. Balakumar, *Colloids Surf. Physicochem. Eng. Aspects*, 2020, 602, 125050.
- 10 H. Safitri, W. T. Wahyuni, E. Rohaeti, M. Khalil and F. J. R. a. Marken, *RSC Adv.*, 2022, 12, 25269-25278.
- 11 G. Turkkan, S. Z. Bas, K. Atacan and M. Ozmen, Anal. Methods, 2022, 14, 67-75.