Design of a label-free aptasensor for electrochemical determination of hemoglobin; Investigation of the peroxidase-like activity of hemoglobin for the sensing of different substrates

Ahlem Teniou¹, Amina Rhouati^{1*,} Selma rebai², Gaëlle Catanante³ and Jean-Louis Marty³

¹Bioengineering laboratory, Higher national school of biotechnology, Constantine-Algeria

² Laboratory of Sensors, Instrumentations and Process (LCIP), University of Khenchela, Khenchela, Algeria.

³ BAE laboratory, Perpignan University, Perpignan-France.

*Correspondence: amina.rhouati@gmail.com

Supplementary Material

Fig. S1 Schematic representation of (1) the formation of gold nanoparticles by the interaction of Hydrogen tetrachloroaurate (HAuCl₄) and Sodium sulfate (Na₂SO₄); (2) the formation of cysteine modified gold nanoparticles via Au-thiol group (SH) interaction; (3) the immobilization of Aptamer on L-cysteine modified gold nanoparticles via EDC/NHS interaction.

Fig. S2 Nyquist plots of 5 mM [Fe (CN)₆]^{4-/3-} redox couple in PBS, pH 7.4, for bare SPCE (curve a), AuNPs /SPCE(curve b), L-cysteine/ AuNPs /SPCE (Curve c), and Aptamer/ L-cysteine/ AuNPs/ SPCE (curve d) using a frequency range of 100000 Hz - 0.1 Hz, 10 point/decade and an AC voltage of 10 mv ms. Inset: Equivalent circuit (CPE with diffusion) Ru(Ø[RpWd]) used to fit the frequency scans along with the impedance spectra.

Fig. S3 Optimization of Hb-aptamer incubation time (2, 6, 10, 14, 18, 22 min). Plot of peak current difference vs. Hb incubation time obtaining from SWV in the potential range of -0.2 to +0.4 with a frequency of 7 Hz and an amplitude of 0.025V using 0.1 M PBS (pH 7.4) containing 5.0 mM $[Fe (CN)_6]^{3-/4-}$.

Fig. S4 Effect of Hb concentrations (3, 6, 9, 10 μ g.ml⁻¹) on the H₂O₂ electrocatalytic activity using amperometry measurements toward successive additions of H₂O₂ in 0.1M PBS (pH 7) with an applied potential of -0.4V. Error bars correspond to the relative standard deviation of three independent experiments

Table S1. Comparison between this method and other reported electrochemical techniques for detection of $H_2O_{2.}$

	Method	Target	Principle	Linear range		LOD	Ref
				(µM)		(µM)	
Ar	nperometry	H_2O_2	Hb-PCL/GCE	2 - 3	30	6.07	1
Ar	nperometry		Hb-AgNPs-PAMAM/GCE	6 - 9	91	4.9	2
	CV		Hb/IL/CILE	100 - 1	500	40	3

Linear square wave		NF-Hb-Cys- AuNPs/SPCE.	10 - 450	4.4	4
Amperometry		Hb/Ag NPs-BDDE	0.5 - 20	2.5	5
Amperometry		Hb-SWCNTs-	23.6 - 134	7.87	6
		CTAB/GCEs.			
CV + Amperometry		Hb/CMC-TiO2-NTs/GC	4-64	4.6	7
Amperometry		GE/Fe ₃ O ₄ /Hb/GCE	0.25 - 1700	06	8
Amperometry		Hb/Aptamer/L-	0.2 - 2100	0.044	This
		cysteine/AuNPs/SPCE			work
Amperometry	Nitrite	Hb/AuNPsPTH/PtNPs/GC	70×10 ⁻³ - 1200	0.02	9
		Е			
		Hb/HS-CdS/GCE	0.3 - 182	0.08	10
		Hb/Au/GACS/GCE	0.05 -1000	0.01	11
		Nafion/Hb/MX-Ti ₃ C ₂ /GCE	0.5 - 11800	0.12µM	12
CV		AuNPs@MoS2/GCE	10 - 1100	5	13
Amperometry		Hb/Apt/L-	3.6 ×10 ⁻³ –	0.00055	This
		cysteine/AuNPs/SPCE	1300		work

Abbreviations: SPCE: screen printed carbon electrode; GCE: glassy carbon electrode; PCL: poly(ε -caprolactone); AgNPs: silver nanoparticles; PAMAM: poly(amidoamine) dendrimer; IL: ionic liquid; CILE: carbon ionic liquid electrode; NF: nafion; Cys: cysteine; BDDE: Boron doped diamond electrodes; SWCNTs: single walled carbon nanotubes; CTAB: cetyltrimethylammonium bromide; CMC: Carboxymethyl cellulose; TiO₂-NTs: Titanium oxide nanotubes; GE: Graphene. GCE: Glassy carbon electrode; PTH: Polythionine; PtNPs: Platinium nanoparticles, AuNPs: Gold nanoparticles, HS-CdS: CdS hollow nanospheres; GACS: Graphene with biocompatible chitosan; MX-Ti₃C₂: MXene- Ti₃C₂; MoS₂: Molybdenum disulfide; Hb: Hemoglobin; APT: Aptamer; CV: Cyclic voltammetry

Fig. S5 Amperometric response at constant potential of -0.4 V for Hb/Aptamer/Lcysteine/AuNPs/SPCE in phosphate buffer with successive addition of 35 μ M H₂O₂ (D), 100 μ M ascorbic acid (A), 500 μ M dopamine (B), 100 μ M Glucose (C), 100 μ M Fructose (E), and 100 μ M Arginine (F)

Table S2. Determination and recovery results corresponding to H_2O_2 and nitrite determination in rain water and river water samples, respectively (n = 3).

Sample	Added	Founded	RSD	Recovery
	(µM)	(µM)	%	0⁄0
	4.5	4.3	0.9	95.55
Rain water	100	103	2.01	103
	800	793	1.56	99.12
	1500	1496	1.3	99.73

	5	5.18	1.5	103.6
River water	80	82.63	3.01	103.28
	500	497.23	1.26	99.44
	1000	1000.96	0.98	100.09

References

- 1. W. Zheng, J. Li and Y. Zheng, *Biosensors and Bioelectronics*, 2008, **23**, 1562-1566.
- 2. M. Baccarin, B. C. Janegitz, R. Berté, F. C. Vicentini, C. E. Banks, O. Fatibello-Filho and V. Zucolotto, *Materials Science and Engineering: C*, 2016, **58**, 97-102.
- 3. A. Safavi, N. Maleki, O. Moradlou and M. Sorouri, *Electrochemistry Communications*, 2008, **10**, 420-423.
- 4. A. S. Elewi, S. A. W. Al-Shammaree and A. K. M. A. Al Sammarraie, *Sensing and Bio-Sensing Research*, 2020, **28**, 100340.
- 5. L. Jiang, J. Hu and J. S. Foord, *Electrochimica Acta*, 2015, **176**, 488-496.
- 6. S. Wang, F. Xie and G. Liu, *Talanta*, 2009, **77**, 1343-1350.
- 7. W. Zheng, Y. Zheng, K. Jin and N. Wang, *Talanta*, 2008, **74**, 1414-1419.
- 8. Y. Wang, H. Zhang, D. Yao, J. Pu, Y. Zhang, X. Gao and Y. Sun, *Journal of Solid State Electrochemistry*, 2013, **17**, 881-887.
- 9. Y. Zhang, R. Yuan, Y. Chai, J. Wang and H. Zhong, *Journal of Chemical Technology, Biotechnology and Applied Biochemistry*, 2012, **87**, 570-574.
- 10. Z. Dai, H. Bai, M. Hong, Y. Zhu, J. Bao and J. Shen, *Biosensors and Bioelectronics*, 2008, **23**, 1869-1873.
- 11. J. Jiang, W. Fan and X. Du, *Biosensors and Bioelectronics*, 2014, **51**, 343-348.
- 12. H. Liu, C. Duan, C. Yang, W. Shen, F. Wang and Z. Zhu, *Sensors and Actuators B: Chemical*, 2015, **218**, 60-66.
- 13. J. Chao, M. Zou, C. Zhang, H. Sun, D. Pan, H. Pei, S. Su, L. Yuwen, C. Fan and L. Wang, *Nanotechnology*, 2015, **26**, 274005.