Supporting information

Hapten Synthesis and a Colloidal Gold

Immunochromatographic Strip Assay to Detect Nitrofen and

Bifenox in Fruits

Peng Wang^{1,2,3}, Xinxin Xu^{1,2,3}, Lingling Guo^{1,2,3}, Liqiang Liu^{1,2,3}, Hua Kuang^{1,2,3}, Jing Xiao^{b*}, Chuanlai Xu^{1,2,3*}

¹State Key Laboratory of Food Science and Technology, Jiangnan University; ²International Joint Research Laboratory for Biointerface and Biodetection and School of Food Science and Technology, Jiangnan University; ³Collaborative Innovation center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China; ⁴NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, People's Republic of China; ^{*}Corresponding author, Email: <u>xiaojing@cfsa.net.cn; xcl@jiangnan.edu.cn;</u>

Fig. S1 Composition of the test strip (a) and the schematic for samples detection (b).

Fig. S2 The mass spectrum of NIT-1. (a) The total ion current spectrum of NIT-1 (b)

The signal strength of the NIT-1 and structure, (c) The mass spectrum of NIT-1.

Fig. S3 The ¹H NMR test results of NIT-1.

Fig. S4 The ¹H NMR test results of compound 3.

Fig. S5 The mass spectrum of NIT-2. (a) The total ion current spectrum of NIT-1 (b)

The signal strength of the NIT-2, (c) The mass spectrum of NIT-2.

Fig. S6 The ¹H NMR test results of NIT-2.

Fig. S7 Screening for successful pairs of coating antigen/serum. Criterion of success is \geq 50% inhibition at 20 ng/mL NIT.

Fig. S8 Five strains of antibodies were deficient in ic-ELISA standards for two pesticides when coated with different antigens. (a) and (c) The coated antigen was homologous. (b) and (d) The coated antigen was heterologous.

Fig. S9 Optimize gold-labeled antibody resuspension.

Table S1. The titer of mAbs standard curve.

Table S2. The IC_{50} values of mAbs.

Table S3. The affinity constant of mAb 5G7.

Table S4. Cross-reactivity of mAb with NIT and analogues.

1

Fig. S1 Composition of the test strip and the schematic for samples detection.

Fig. S2 The mass spectrum of NIT-1. (a) The total ion current spectrum of NIT-1 (b) The signal strength of the NIT-1 and structure, (c) The mass spectrum of NIT-1.

Fig. S4 The ¹H NMR test results of compound 3.

Fig. S5 The mass spectrum of NIT-2. (a) The total ion current spectrum of NIT-1 (b) The signal strength of the NIT-2, (c) The mass spectrum of NIT-2.

Fig. S6 The ¹H NMR test results of NIT-2

Fig. S7 Screening for successful pairs of coating antigen/serum. Criterion of success is \geq 50% inhibition at 20 ng/mL NIT.

Fig. S8 Five strains of antibodies were deficient in ic-ELISA standards for two pesticides when coated with different antigens. (a) and (c) The coated antigen was homologous. (b) and (d) The coated antigen was heterologous.

Fig. S9 Optimize gold-labeled antibody resuspension.

		NIT-1	-BSA			NIT-1-	ABSA			NIT-2	2-BSA			NIT-2-	ABSA	
Coating antigen	2	#	3	#	7	#	9	#	1	1#	14	1#	1^	7#	18	3#
(0.1mg/mL)	D)F	D)F	D	F	D	F	D	F	D	F	D)F	D	F
	1000	9000	1000	9000	1000	9000	1000	9000	1000	9000	1000	9000	1000	9000	1000	9000
NIT-1-OVA	+++	+++	+++	+++	+++	+++	+++	+++	+++	++	+++	++	++	+	+	+
NIT-2-OVA	++	+	+	++	+++	+++	+++	+++	+++	+++	+++	+++	++	+	++	++
NIT-3-OVA	+	-	-	-	+	-	+	-	+	-	+	-	-	-	-	-

Table S1. The titer of mAbs standard curve.

Annotation : -, absorbance <0.8; +, absorbance 0.8-1.2; ++, absorbance 1.2-2.0d; +++, absorbance >2.0; DF is short for dilution fold.

	Homologe	ous coatings	Heterologous coatings			
mAbs	BIF	NIT (ng/mL	BIF	NIT		
	(ng/mL))	(ng/mL)	(ng/mL)		
1B11	2.98	2.46	1.89	1.10		
2D11	1.57	1.38	1.04	1.12		
3C11	1.35	0.92	0.86	0.87		
5G7	1.54	1.22	1.04	0.73		
6G4	5.76	4.64	2.20	2.11		

Table S2. The IC_{50} values of mAbs.

Table S3. The affinity constant of mAb 5G7.

Antigen	Affinity constant
Homologous coatings	2.01×10 ¹⁰
Heterologous coatings	1.54×10 ⁷

Table S4. Cross-reactivity of mAb with NIT and analogues.

Chemical compound	Structure	$IC_{50}(ng/mL)$	Cross-reaction (%)
Nitrofen		0.87	100
Bifenox		0.86	101
Oxyfluorfen		>5	<11.8
Acifluorfen		>5	<11.8
Fomesafen		>5	<11.8

Lactofen		>5	<11.8
----------	--	----	-------