Electronic supplementary information

Rapid detection of Saccharomyces cerevisiae with Boronic Acid-

Decorated Multivariate Metal-Organic Frameworks and Aptamer

Mengjing Teng^{a,c}, Mengdi Hao^b, Chuanfan Ding^b, Li Wang^{a,c}, Hao Shen^{b,*}, Shaoning Yu^b,

Liangqiang Chen ^{a,c,*}, and Fan Yang ^{a,c*}

^a Kweichow Moutai Group, Renhuai, Guizhou 564501, China.

^b Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.

^c Key Laboratory of Industrial Microbial Resources Development, Kweichow Moutai Co., Ltd, Renhuai, Guizhou 564501, China.

*Corresponding authors.

Email address: shenhao@nbu.edu.cn (for H.S.), chenliangqiang123@126.com (for L.C.) and yangfanmt@189.cn (for F.Y.).

Tel: +86-574-87609578

Aptamer screening

A toggle-cell systematic evolution of ligands by exponential enrichment (SELEX) method was used to select aptamer for *S. cerevisiae*. The specific steps include microbial isolation, DNA extraction and Sanger sequencing, pangenome analysis, sequential toggle-cell SELEX operation, PCR amplification and determination of binding affinity. The dissociation constants (K_d) and maximum binding intensity (B_{max}) of the aptamer used in this study were 4.936±0.121 nM and 0.993±0.048 nM, respectively, according to fluorometer analysis.

Direct detection of S. cerevisiae in distilled yeast samples

Distilled yeast (10 g) was added to a triangular flask containing glass beads and 90 mL of sterile physiological saline and incubated for 30 min (160 rpm/min). The supernatant was gradiently diluted and the amount of *S. cerevisiae* detected using the proposed fluorescence method. For the counting method, the diluted microbial solution was placed on the sterile plate, mixed with Bengal red agar medium (cooled to 50°C), and cultivated at 28°C for 1 day. The counting range was 30-300.

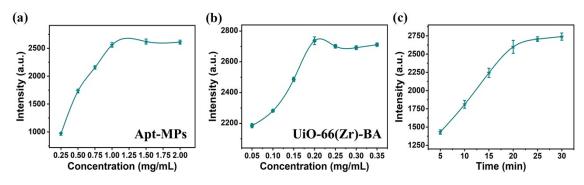


Fig. S1 Optimization of the assay. (a) Concentration of Apt-MPs; (b) concentration of UiO-

66(Zr)-BA; (c) incubation time.

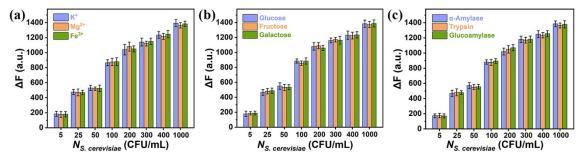


Fig. S2 Susceptibility fluorescence tests with different concentrations of *S. cerevisiae* and metal ions (K⁺, Mg²⁺, and Fe³⁺, 100 mM) (a), small molecules (glucose, fructose, and galactose, 100 mM) (b), and proteins (α-amylase, trypsin, and glucoamylase, 5 mg/mL) (c).

Detection	D	Linear range	LOD	Test time	D-f	
method	Recognition component	(CFU/mL)	(CFU/mL)	(h)	Ref.	
PCR	Specific primers	3.8-3.8×10 ⁵	3.8	>2	[1]	
Optics	Silver sensitized by	3.2×10 ³ -7×10 ⁷	-	> 1.5	[2]	
	lectins	5.2~10°-7~10°				
qPCR	Taqman	3.4×10 ² -3.4×10 ⁷	78	> 4	[3]	
Cyclic voltammetry	TTCC/GCE	2×10 ⁴ -10 ⁸	104	~ 1	[4]	
Impedance spectroscopy	MPA(SAM)/AuE	10 ² -10 ⁸	10 ²	~ 1	[5]	
Fluorescence	Ionic liquid mediated	5×10 ² -1×10 ⁶	5×10 ²	~ 1.5	[6]	
	carbon dots	J^10-1^10°				
Fluorescence	Fluorescence	$10 - 10^{6}$	3	~ 0.5	This work	

Table S1 Comparison of the current approach to reported methods for *S. cerevisiae* analysis.

Table S2 The intra-batch and inter-batch precision of the proposed biosensor for S. cerevisiae

detection.								
S. cerevisiae	Intra-batch		Inter-batch					
(CFU/mL)	$Mean \pm SD$	CV (%, n=6)	$Mean \pm SD$	CV (%, n=6)				
20	18 ± 1.0	5.6	22 ± 1.0	4.5				
10 ²	$9.7{\times}10{\pm}5.9$	6.1	$1.1{\times}10^2{\pm}6.5$	5.9				
104	$1.0{ imes}10^4 \pm 3.3{ imes}10^2$	3.3	$9.9{\times}10^3 \pm 1.8{\times}10^2$	1.8				
106	$9.8{ imes}10^5{\pm}5.0{ imes}10^4$	5.1	$9.6{\times}10^5{\pm}7.1{\times}10^4$	7.4				

	Proposed method		Counting method		
	Mean	RSD	Mean	RSD	
	(×10 ³ CFU/mL, n=5)	(%)	(×10 ³ CFU/mL, n=5)	(%)	
Distilled yeast 1	2.45	4.2	4.42	12	
Distilled yeast 2	1.38	5.5	3.91	8.2	
Distilled yeast 3	3.24	5.0	5.37	9.6	

Table S3 Direct detection of S. cerevisiae in distilled yeasts.

REFERENCES

(1) P. Martorell; A. Querol; M. T. Fernandez-Espinar. Rapid identification and enumeration of Saccharomyces cerevisiae cells in wine by real-time PCR. *Appl. Environ. Microbiol.* 2005, 71, 6823-6830.

(2) Q.G. Gyurjyan; M.V. Mikaelyan; G.G. Poghosyan; V.A. Hovhannisyan; V, K. Gasparyan.
Detection of Saccharomyces cerevisiae by silver nanoparticles sensitized with various lectins. *Anal. Methods* 2020, 12, 3508-3512.

(3) F. Salinas; D. Garrido; A. Ganga; G. Veliz; C. Martinez. Taqman real-time PCR for the detection and enumeration of *Saccharomyces cerevisiae* in wine. *Food Microbiol.* **2009**, 26, 328-332.

(4) S. Han; X. Li; G. Guo; Y. Sun; Z. Yuan. Voltammetric measurement of microorganism populations. *Anal. Chim. Acta* **2000**, 405, 115-121.

(5) H. Chen; C. Heng; P. Puiu; X. Zhou; A. Lee; T. Lim; S. Tan. Detection of Saccharomyces cerevisiae immobilized on self-assembled monolayer (SAM) of alkanethiolate using electrochemical impedance spectroscopy. *Analy. Chim. Acta* **2005**, 554, 52-59.

(6) J. Wang; J. Teng; T. Jia; Y. Shu. Detection of yeast *Saccharomyces cerevisiae* with ionic liquid mediated carbon dots. *Talanta* **2018**, 178, 818-824.