Supplementary Material for:

Red Emissive Carbon Nanostructure-Anchored Molecularly Imprinted

Er-BTC MOF: A Biosensor for Visual Anthrax Monitoring

Solmaz Norouzi, Kheibar Dashtian, Fereshteh Amourizi, Rouholah Zare Dorabei*

Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran

* Corresponding author: E-mail address: zaredorabei@iust.ac.ir (Rouholah Zare-Dorabei)

Tel: +98 21 77240646 & Fax: +98 21 77491204

Fig. S1. Fluorescence spectra of the probe in the absence and presence of DPA (80 μ M) at different pH values (a and b), and fluorescence spectra of the probe at different dosages of Er-BTC-MOF/MIP-r-QCNSs in the absence and presence of DPA (d and e) and the corresponding fluorescence ratios to the blank

signal (c and f).

Fig. S2. Fluorescence spectra of Er-BTC-MOF/MIP-r-QCNSs in the presence of DPA (80 μM) at different times (pH=7, PBS) (a) and temperatures (pH=7, PBS, assay time=1 min) (c), and the corresponding

fluorescence ratios to the blank signal (b and d).

 Table S1. The various concentration of dipicolinic acid in urine and well water samples and the calculated

results

Real sample	Added Concentration (µM)	Detected Concentration (µM)	Recovery (%)	RSD (n=3)	
Urine	0	2.45	-	3.49	
	25	28.14	102.76	2.61	
	60	62.62	101.16	2.64	
	90	92.57	100.14	2.76	
Well water	0	not found	-	3.29	
	25	25.01	100.04	3.38	
	60	59.65	99.41	2.94	
	90	89.74	99.71	2.19	

Active material	Method	Assay time	Linear range (µM)	Portability	LOD	Reference
RB-Eu-BTC	Fluorometric	16 s	0-120	No	3.20 μM	[1]
CDs-Eu	Colorimetric	15 s	0.5-5	Yes	0.8 nM	[2]
Eu-MOF	Ratiometric fluorescence	-	5-50	No	1.3 μM	[3]
CD-Cu(II)	Fluorescence	20 s	0.5-12.5	No	56 nM	[4]
Dpy-Bt-COF@Eu ³⁺	Fluorescence	10 s	0.1-10	No	125 nM	[5]
Eu ³⁺ /CDs	Ratiometric Fluorescent	10 min	0–20 μM	No	1.18 μM	[6]
Fe-MIL-88NH ₂	Fluorometric/ Colorimetric	50 min	5–25 μM	No	3.00 μM	[7]
Er-BTC/r-QCNSs/MIP	Visual fluorescence test strip (fluorimeter/colorimeter)	60 s	50-125	Yes	1.28 μM	This work

Table S2. Comparison of LOD and analytical methods for measuring dipicolinic acid

References

- Lin, C. and F. Zhigang, Modifying luminescent metal-organic frameworks with rhodamine dye: Aiming at the optical sensing of anthrax biomarker dipicolinic acid. Inorganica Chimica Acta, 2018.
 477: p. 51-58.
- 2. Wang, J., et al., *An europium functionalized carbon dot-based fluorescence test paper for visual and quantitative point-of-care testing of anthrax biomarker.* Talanta, 2020. **220**: p. 121377.
- 3. Zhao, X.-Y., et al., *A water-stable europium-MOF sensor for the selective, sensitive ratiometric fluorescence detection of anthrax biomarker.* Microchemical Journal, 2021. **166**: p. 106253.
- 4. Pang, L.-F., et al., *Cu (II)-assisted orange/green dual-emissive carbon dots for the detection and imaging of anthrax biomarker.* Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021. **244**: p. 118872.
- 5. Li, Y.-F., et al., *Colorimetric detection of putrescine and cadaverine in aquatic products based on the mimic enzyme of (Fe, Co) codoped carbon dots.* Journal of Food Measurement and Characterization, 2021. **15**(2): p. 1747-1753.
- 6. Li, X., et al., A Smartphone Integrated Platform for Ratiometric Fluorescent Sensitive and Selective Determination of Dipicolinic Acid. Biosensors, 2022. **12**(8): p. 668.
- 7. Deng, D., et al., *Dual-mode strategy for 2, 6-dipicolinic acid detection based on the fluorescence property and peroxidase-like activity inhibition of Fe-MIL-88NH2*. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023: p. 122363.