Employing bulk-heterostructure conductive polymer PFBT/PFO for

Photoelectrochemical Analysis of *p*-phenylenediamine

Kangdi Guan, Ziwei Zhang, Pinghua Ling,* and Feng Gao*

Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China

*Corresponding author. Phone/Fax: +86-553-3937137. E-mail: phling@ahnu.edu.cn; fgao@mail.ahnu.edu.cn.

Fig. S1. (A) EIS and (B) OCP spectra of PFO/ITO, PFBT/ITO, and PFO/PFBT/ITO electrodes.

Fig. S2. Effects of solution pH on (A) PFO/ITO and (B) PFBT/ITO electrode electrochemical response, and external potential on (C) PFO/ITO and (D) PFBT/ITO electrode electrochemical response in the presence of 20 μ M p-PD.

Fig. S3. The amperometric response was recorded for (A) PFO/ITO and (B) PFBT/ITO at different potential in the presence of 20 mM p-pd.

Fig. S4. (A) Photocurrent responses of the PFO/ITO electrode to 1, 10, 20, 50, 80, 100 μ M (from a to f). (B) Photocurrent responses of the PFBT/ITO electrode to 0.2, 0.4, 1, 5, 20, 50, 100, 150, 160, 180, 200 μ M (from a to k). (C) Plot of peak current vs p-pd concentration on PFO/ITO electrode, and (D) Plot of peak current vs logarithm of p-pd concentration on PFO/PFBT/ITO electrode.

Table S1. The analytical performance of PFO/ITO, PFBT/ITO and PFO/PFBT/ITO electrode toward p-pd.

Electrode	Decreasion equation	correlation	detection limit
	Regression equation	coefficient	(µM)
PFO	$\Delta I = -0.91x - 9.58$	0.998	0.47
PFBT	$\Delta I = -65.66 x - 50.18$	0.998	0.16
PFO/PFBT	$\Delta I = -79.37x - 78.43$	0.993	0.096

Table S2. Comparison on the analytical performance toward p--PD between the present protocol and previously reported sensors.

Range of detection (µM)	Limit of detection (µM)	Method	Reference
30-400	30	Fluorescence	1
0.1-10	0.056	Fluorescence	2
0.1-3	0.043	Photoeletrochemical	3
0.02-10	0.007	Fluorescence	4
0.1-200	0.096	Photoeletrochemical	This work

Fig. S5. Amperometric response of (A) PFO/ITO electrode (black) and PFBT/ITO electrode (blue), and (B) PFO/PFBT/ITO electrodes in the presence of 20 μ M p-pd in 0.1 M PBS. (C) I-t plots recorded at -0.3 V for PFO/ITO electrode (a), PFBT/ITO electrode (b), and PFO/PFBT/ITO electrodes (c) in the presence of 20 μ M p-pd in 0.1 M PBS.

Fig. S6. The amperometric response was recorded for (A) PFO/ITO electrode, (B) PFBT/ITO electrode and (C) PFO/PFBT/ITO electrode at -0.3 V in the presence of 20 μ M p-pd in 0.1 M PBS with different time.

Fig. S7. Photocurrent response (ΔI) of PFO/PFBT/ITO electrode toward 10 μ M p-PD and 1 mM interfering species.

Sample	Blank (µM)	Addition (µM)	Actuality (µM)	Recovery	Average recovery	RSD
			0.377	105.90%		
	0.156	0.2	0.382	107.30%	108.99%	3.85%
		-	0.405	113.76%		
		0.5	0.714	106.25%		
S1 (0.05g)	0.172		0.603	89.73%	99.16%	8.57%
(0.05g)		-	0.682	101.49%		
		1	1.283	109.75%		
	0.169		1.179	100.86%	104.42%	4.51%
			1.200	102.65%		
			0.548	102.43%		
	0.335	0.2	0.527	98.50%	100.69%	1.19%
		-	0.541	101.12%		
52			0.793	95.89%		
52	0.327	0.5	0.812	98.19%	99.92%	5.13%
(0.1g)		-	0.874	105.68%		
	0.367	1	1.402	102.56%		
			1.425	104.24%	102.90%	1.17%
		-	1.393	101.90%		
S3 (0.5g)			1.859	101.20%		
	1.637	0.2	1.823	99.24%	101.60%	2.54%
		-	1.917	104.35%		
			2.318	99.27%		
	1.835 0.	0.5	2.307	98.80%	100.09%	1.83%
		-	2.386	102.18%		
	1.727	1	2.808	102.97%		
			2.655	97.36%	99.84%	3.56%
			2.631	96.48%		

 Table S3 PEC sensing of p-PD in hair dye creams.

Sample	Blank	Addition	Actuality	Recovery	Average	RSD
	(μΜ)	(μΜ)	(µM)	00.040/	lecovery	
	0.047		1.235	99.04%	100.070/	2.260/
	0.247	I	1.301	104.33%	102.97%	3.36%
			1.316	105.53%	-	
S1		_	5.172	98.21%		
(0.05σ)	0.266	5	5.318	100.99%	99.78%	1.43%
(0.055)			5.274	100.15%	-	
			10.406	101.08%		
	0.295	10	9.883	96.00%	97.25%	3.48%
			9.747	94.68%	-	
			1.493	94.79%		
	0.575	1	1.528	97.02%	98.41%	4.56%
			1.629	103.43%	-	
52			5.668	101.00%		
(0.1a)	0.612	5	5.752	102.49%	103.35%	2.78%
(0.1g)			5.980	106.56%	_	
			10.379	97.68%	-	
	0.625	10	10.481	98.64%	102.25%	6.94%
			11.732	110.42%		
			3.790	102.77%		
	2.688	1	3.914	106.13%	107.34%	4.29%
			4.172	113.12%		
~~			7.911	105.58%	-	
S3 (0.5g)	2.493	5	7.374	98.41%	106.34%	7.84%
			8.619	115.03%		
	2.741 10		12.633	99.15%	94.43%	4.47%
		10	11.596	91.01%		
			11.865	93.12%		

Table S4 PEC sensing of p-PD in dye wastewater.

Reference

1. K. Ngamdee, S. Martwiset, T. Tuntulani and W. Ngeontae, Sens. Actuators B Chem., 2012, 173, 682-691.

2. W.J. Wang, J.M. Xia, X. Hai, M.L. Chen and J.H. Wang, Environ Sci-nano., 2017, 4, 1037-1044.

3. Y. Zhu, K. Yan, Y. Liu and J. Zhang. Anal Chim. Acta., 2015, 884, 29-36.

4. L.F. Gao, X. Lin, X. Hai, X. W. Chen, and J.H. Wang. ACS Appl Mater Inter., 2018, **10**, 43049-43056.