Supporting Information

Colorimetric Sensor Array for Antioxidant Recognition based on

Co₃O₄ Dual Enzyme Activity

Pingping Hao^a, Zhenchao Liu^a, Zhiwei Wang^a, Min Xie^{b,*} and Qingyun Liu^{a,*}

^a College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P R China

^b Community Health Service Center (University Hospital), University of Science and Technology Beijing, Beijing 100083, P. R. China

* Corresponding Author

E-mail: min66@ustb.edu.cn; qyliu@sdust.edu.cn

Tel: +86 0532 86057757

Preparation

A solution containing cobalt nitrate hexahydrate (Co(NO₃)₂•6H₂O, 2.0 mmol), glycerol (16 mL) and isopropanol (60 mL) was placed in a Teflon-lined stainless-steel autoclave. The autoclave was then treated at 180 °C for 6 h. After cooling to room temperature naturally, the solution was centrifuged to recover the solid precipitate, which was washed several times with ethanol and dried in an oven at 80 °C to afford the precursor of Co.

A mixture containing the precursor (0.1 g) and deionized water (20 mL) was placed in a Teflon-lined stainless steel autoclave, and then treated at 160 °C for 3 h. After cooling to room temperature naturally, the solution was centrifuged to recover the solid precipitate. The finally obtained solid product is denoted as h-CoOH. The Co_3O_4 samples were prepared by calcining h-CoOH in air at 400 °C for 2 h, respectively.

Fig. S1 Kinetic analysis of the as-prepared Co₃O₄ by the Michaelis–Menten model and double reciprocal plots, respectively.

Fig. S2 (a), (c) Effects of various active scavengers during the catalysis of TMB with the aid of Co_3O_4 and (b) Fluorescence intensity varies with the concentration of Co_3O_4 at different wavelengths.

	K _m (1	mM)	V _{max} (10-8	³ Ms ⁻¹)	_
Catalyst	H_2O_2	ТМВ	H_2O_2	ТМВ	Ref.
HRP	3.7	0.434	8.71	10	1
CeO ₂ /C	2.61	0.12	3.31	2.08	2
CoFe-LDH/CeO ₂	10.82	0.419	\	\	3
CeO ₂ NPs(OXD)	١	0.80	١	30.00	4
Co ₃ O ₄ (POD)	1.3	0.221	5.62	71.22	This work
Co ₃ O ₄ (OXD)	١	0.598	١	4.199	This work

Table S1 Comparison of peroxidase-like and oxidase-like kinetic parameters.

Linear range	LOD	Method	Ref.
1-200 μM	0.07 μΜ	Fluorescence	5
0.5-25 μΜ	0.18 μΜ	Electrochemical	6
0-1000 nM	8.26 nM	Colorimetric sensor array	This work

Table S2 Other methods used to detect DA.

Table S3 Other methods used to detect AA.

Linear range	LOD	Method	Ref.
0-80 μΜ	0.026 µM	Colorimetric	7
10-250 μM	1.3 µM	Fluorescence	8
0-1000 nM	5.42 nM	Colorimetric sensor array	This work

Table S4 Other methods used to detect GSH.

Linear range	LOD	Method	Ref.
1-10 µM	0.658 μΜ	Colorimetric	9
12.5-800 μM	0.7 μΜ	Fluorescence	10
0-1000 nM	2.89 nM	Colorimetric sensor array	This work

Table S5 Other methods used to detect Cys.

Linear range	LOD	Method	Ref.
0-140 μΜ	11.1 nM	Fluorescence	11
0.05 -14.0 μM	20 nM	Colorimetric	12
0-1000 nM	6.24 nM	Colorimetric sensor array	This work

References

- L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett and X. Yan, *Nature Nanotechnology*, 2007, 2, 577-583.
- 2. W. Dong and Y. Huang, *Microchimica Acta*, 2020, 187.
- 3. W. Yang, J. Li, J. Yang, Y. Liu, Z. Xu, X. Sun, F. Wang and D. H. L. Ng, *Journal of Alloys and Compounds*, 2020, **815**.
- 4. X. Hu, A. Saran, S. Hou, T. Wen, Y. Ji, W. Liu, H. Zhang, W. He, J.-J. Yin and X. Wu, *RSC Advances*, 2013, **3**.
- 5. X. Chen, N. zheng, S. Chen and Q. Ma, *Analytical Methods*, 2017, 9, 2246-2251.
- 6. S. Zhang, T.-T. Feng, L. Zhang and M.-N. Zhang, *Chinese Journal of Analytical Chemistry*, 2019, **47**, 1664-1670.
- 7. H. Tan and Z. Nan, *Materials Letters*, 2022, **320**.
- 8. J. Zhu, Z.-J. Zhao, J.-J. Li and J.-W. Zhao, *Journal of Luminescence*, 2017, **192**, 47-55.
- X. Chen, S. Han, N. Li, J. Lian, Y. Zhang, Q. Liu, X. Zhang and X. Zhang, *Talanta*, 2020, 218, 121142.
- 10. R. Jia, K. Jin, J. Zhang, X. Zheng, S. Wang and J. Zhang, Sensors and Actuators B: Chemical, 2020, 321.
- X. Song, Y. Yang, J. Ru, Y. Wang, F. Qiu, Y. Feng, G. Zhang and W. Liu, *Talanta*, 2019, 204, 561-568.
- 12. Z. Huang, Y. Yang, Y. Long and H. Zheng, *Analytical Methods*, 2018, **10**, 2676-2680.