Supporting Information

Colorimetric Sensor Array for Antioxidant Recognition based on

Co3O⁴ Dual Enzyme Activity

Pingping Hao^a , Zhenchao Liu^a , Zhiwei Wang^a , Min Xieb,* and Qingyun Liua,*

^a College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, P R China ^b Community Health Service Center (University Hospital), University of Science and

Technology Beijing, Beijing 100083, P. R. China

*** Corresponding Author**

E-mail: [min66@ustb.edu.cn;](mailto:min66@ustb.edu.cn) qyliu@sdust.edu.cn

Tel: +86 0532 86057757

Preparation

A solution containing cobalt nitrate hexahydrate $(Co(NO₃), 6H₂O, 2.0 mmol)$, glycerol (16 mL) and isopropanol (60 mL) was placed in a Teflon-lined stainless-steel autoclave. The autoclave was then treated at $180 \degree C$ for 6 h. After cooling to room temperature naturally, the solution was centrifuged to recover the solid precipitate, which was washed several times with ethanol and dried in an oven at 80 $\mathrm{^{\circ}C}$ to afford the precursor of Co.

A mixture containing the precursor (0.1 g) and deionized water (20 mL) was placed in a Teflon-lined stainless steel autoclave, and then treated at 160 °C for 3 h. After cooling to room temperature naturally, the solution was centrifuged to recover the solid precipitate. The finally obtained solid product is denoted as h-CoOH. The $Co₃O₄$ samples were prepared by calcining h-CoOH in air at 400 °C for 2 h, respectively.

Fig. S1 Kinetic analysis of the as-prepared $Co₃O₄$ by the Michaelis–Menten model and double reciprocal plots, respectively.

Fig. S2 (a), (c) Effects of various active scavengers during the catalysis of TMB with the aid of $Co₃O₄$ and (b) Fluorescence intensity varies with the concentration of $Co₃O₄$ at different wavelengths.

	K_m (mM)		V_{max} (10 ⁻⁸ Ms ⁻¹)		
Catalyst	H_2O_2	TMB	H_2O_2	TMB	Ref.
HRP	3.7	0.434	8.71	10	$\mathbf{1}$
CeO ₂ /C	2.61	0.12	3.31	2.08	$\overline{2}$
CoFe-LDH/CeO ₂	10.82	0.419			3
$CeO2$ NPs(OXD)		0.80		30.00	$\overline{4}$
Co ₃ O ₄ (POD)	1.3	0.221	5.62	71.22	This work
Co ₃ O ₄ (OXD)		0.598		4.199	This work

Table S1 Comparison of peroxidase-like and oxidase-like kinetic parameters.

Linear range	LOD	Method	Ref.
$1-200 \mu M$	$0.07 \mu M$	Fluorescence	5
$0.5 - 25 \mu M$	$0.18 \mu M$	Electrochemical	6
$0-1000$ nM	8.26 nM	Colorimetric sensor array	This work

Table S2 Other methods used to detect DA.

Table S3 Other methods used to detect AA.

Table S4 Other methods used to detect GSH.

Table S5 Other methods used to detect Cys.

References

- 1. L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett and X. Yan, *Nature Nanotechnology*, 2007, **2**, 577-583.
- 2. W. Dong and Y. Huang, *Microchimica Acta*, 2020, **187**.
- 3. W. Yang, J. Li, J. Yang, Y. Liu, Z. Xu, X. Sun, F. Wang and D. H. L. Ng, *Journal of Alloys and Compounds*, 2020, **815**.
- 4. X. Hu, A. Saran, S. Hou, T. Wen, Y. Ji, W. Liu, H. Zhang, W. He, J.-J. Yin and X. Wu, *RSC Advances*, 2013, **3**.
- 5. X. Chen, N. zheng, S. Chen and Q. Ma, *Analytical Methods*, 2017, **9**, 2246-2251.
- 6. S. Zhang, T.-T. Feng, L. Zhang and M.-N. Zhang, *Chinese Journal of Analytical Chemistry*, 2019, **47**, 1664-1670.
- 7. H. Tan and Z. Nan, *Materials Letters*, 2022, **320**.
- 8. J. Zhu, Z.-J. Zhao, J.-J. Li and J.-W. Zhao, *Journal of Luminescence*, 2017, **192**, 47-55.
- 9. X. Chen, S. Han, N. Li, J. Lian, Y. Zhang, Q. Liu, X. Zhang and X. Zhang, *Talanta*, 2020, **218**, 121142.
- 10. R. Jia, K. Jin, J. Zhang, X. Zheng, S. Wang and J. Zhang, *Sensors and Actuators B: Chemical*, 2020, **321**.
- 11. X. Song, Y. Yang, J. Ru, Y. Wang, F. Qiu, Y. Feng, G. Zhang and W. Liu, *Talanta*, 2019, **204**, 561-568.
- 12. Z. Huang, Y. Yang, Y. Long and H. Zheng, *Analytical Methods*, 2018, **10**, 2676-2680.