Urine Protein Quantification in Human Urine on Boron-Doped Diamond Electrodes based on Electrochemical Reaction of Coomassie Brilliant Blue

Hiroshi Aoki,^{1,2,*} Risa Miyazaki,^{1,2} Miho Ohama,^{1,2} Michio Murata,² Kai Asai,^{2,3} Genki Ogata,² Yasuaki Einaga^{2,*}

- ¹ Environmental Management Research Institute, National Institute of Advance Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba 305-8569, Japan
- ² Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
- ³ Department of Sensor Development, First Screening Co., Ltd., 1-30-14 Yoyogi, Shibuya 151-0053, Japan

Supplementary Information

* To whom correspondence should be addressed. E-mail: aoki-h@aist.go.jp (H.A.), einaga@chem.keio.ac.jp (Y.E.)

List of captions

Table S1. The concentrations of protein contained in urine samples calculated by colorimetric

 protein analysis using the Bradford method

Fig. S1. Dependence of absorbance of CBB at 595 nm on concentration of bovine serum albumin (BSA) at room temperature. The dotted line shows a best fit to the data using least-squares linear regression.

Fig. S2. LSVs for the oxidative reaction of CBB on a BDD electrode in 1X PBS (black line) containing 125 μ g/mL BSA (red line), 125 μ g/mL BSA + urine (blue line), 125 μ g/mL BSA + urine + uricase (green line), scanned from 0 to +1.0 V at a scan rate of 0.1 V s⁻¹ at room temperature. The urine sample used here is Urine sample A.

Fig. S3. LSVs for the oxidative reaction of CBB on a BDD electrode in 1X PBS containing urine + uricase + 31.25 (black line), 62.5 (green line), or 125 μ g/mL BSA (red line), scanned from 0 to +1.0 V at a scan rate of 0.1 V s⁻¹ at room temperature. The urine sample used here is Urine sample A.

Fig. S4. Plots of values of the reduction currents at -0.385 V (A), the ratio of the current at -0.385 V ($i_{-0.385 \text{ V}}$) over the current at -0.2 V ($i_{-0.2 \text{ V}}$) (B), and plots of values of the ratio of the current at -0.385 V ($i_{-0.385 \text{ V}}$) minus that at -0.1 V ($i_{-0.1 \text{ V}}$) over the current at -0.2 V ($i_{-0.2 \text{ V}}$) minus that at -0.1 V ($i_{-0.1 \text{ V}}$) over the current at -0.2 V ($i_{-0.2 \text{ V}}$) minus that at -0.1 V ($i_{-0.1 \text{ V}}$) over the current at -0.2 V ($i_{-0.2 \text{ V}}$) minus that at -0.1 V ($i_{-0.1 \text{ V}}$) (C) in LSVs of CBB dependent on protein concentrations in Urine sample A at room temperature. The protein concentration was adjusted by adding a certain amount of BSA to the solution as described in Figure 2. The dotted lines show a best fit to the data using least-squares linear regression.

Fig. S5. Plots of values of the ratio of the current at $-0.3 \text{ V}(i_{-0.3 \text{ V}})$ minus that at $-0.1 \text{ V}(i_{-0.1 \text{ V}})$ in DPVs of the concentrated CBB dependent on protein concentrations in Urine sample A at room temperature. Other conditions are the same as listed in the caption to Fig. 4.

- S2 -

Table S1. The concentrations of protein contained in urine samples calculated by colorimetric

 protein analysis using the Bradford method

Urine sample	protein [µg/mL]
А	25.2 ± 1.8
В	34.8 ± 0.9
С	37.1 ± 0.7
D	17.7 ± 1.0

Figure S1. Dependence of absorbance of CBB at 595 nm on concentration of bovine serum albumin (BSA) at room temperature. The dotted line shows a best fit to the data using least-squares linear regression.

Figure S2. LSVs for the oxidative reaction of CBB on a BDD electrode in 1X PBS (black line) containing 125 μ g/mL BSA (red line), 125 μ g/mL BSA + urine (blue line), 125 μ g/mL BSA + urine + uricase (green line), scanned from 0 to +1.0 V at a scan rate of 0.1 V s⁻¹ at room temperature. The urine sample used here is Urine sample A.

H. Aoki et al.

Figure S3. LSVs for the oxidative reaction of CBB on a BDD electrode in 1X PBS containing urine + uricase + 31.25 (black line), 62.5 (green line), or 125 μ g/mL BSA (red line), scanned from 0 to +1.0 V at a scan rate of 0.1 V s⁻¹ at room temperature. The urine sample used here is Urine sample A.

Figure S4. Plots of values of the reduction currents at -0.385 V (A), the ratio of the current at -0.385 V ($i_{-0.385 \text{ V}}$) over the current at -0.2 V ($i_{-0.2 \text{ V}}$) (B), and plots of values of the ratio of the current at -0.385 V ($i_{-0.385 \text{ V}}$) minus that at -0.1 V ($i_{-0.1 \text{ V}}$) over the current at -0.2 V ($i_{-0.2 \text{ V}}$) minus that at -0.1 V ($i_{-0.1 \text{ V}}$) over the current at -0.2 V ($i_{-0.2 \text{ V}}$) minus that at -0.1 V ($i_{-0.1 \text{ V}}$) over the current at -0.2 V ($i_{-0.2 \text{ V}}$) minus that at -0.1 V ($i_{-0.1 \text{ V}}$) (C) in LSVs of CBB dependent on protein concentrations in Urine sample A at room temperature. The protein concentration was adjusted by adding a certain amount of BSA to the solution as described in Figure 2. The dotted lines show a best fit to the data using least-squares linear regression.

Fig. S5. Plots of values of the ratio of the current at $-0.3 \text{ V}(i_{-0.3 \text{ V}})$ minus that at $-0.1 \text{ V}(i_{-0.1 \text{ V}})$ in DPVs of the concentrated CBB dependent on protein concentrations in Urine sample A at room temperature. Other conditions are the same as listed in the caption to Fig. 4.