Supporting Information for:

Timing Matters: The Overlooked Issue of Response Time Mismatch in pH-Dependent Analyte Sensing using Multiple Sensors

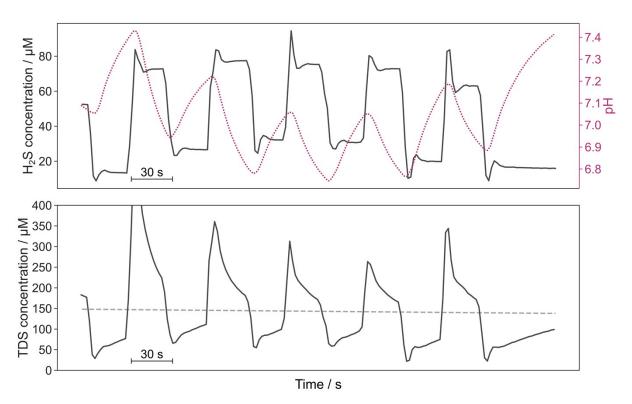
Fabian Steininger¹, Silvia E. Zieger^{1,2*} and Klaus Koren^{1*}

¹Aarhus University Centre for Water Technology, Department of Biology, Section for Microbiology, Aarhus University, Aarhus, Denmark

²Data Scientist and Environmental Consultant – SilviaZieger SP, Otte Ruds Gade 44A, 8200 Aarhus N, Denmark

Corresponding Author*: info@silviazieger.com, klauskoren@bio.au.dk

Table of Contents:


1.	Response Time of Commercial Sensors	S-2
	Table S1. Response times of pH, NH ₄ ⁺ , NH ₃ and H ₂ S sensors	S-2
2.	Additional Experimental Results	S-3
	Figure S1. Calculated TDS – pH shift interval = 30 s	S-3
	Figure S2. Bulk electrode, micro electrode and optode	S-4
	Figure S3. Simulation: slow pH sensor vs. slow H ₂ S sensor	S-4
3.	References	S-5

1. RESPONSE TIME OF COMMERCIAL SENSORS

Table S1. Response times of commercially available optical and electrochemical sensors for pH, NH_4^+ , NH_3 and H_2S .

Analyte	Type	Response time /s	Supplier
pН	Optical	<60	Pyroscience ¹
	Optical	<120	Presens ²
	Potentiometric	1-60	Krohne ³
	Potentiometric	<10	Unisense ⁴
	Potentiometric	<45	MetrOhm ⁵
NH ₄ ⁺	ISE	<180	Hach ⁶
NH ₃	Severinghaus-type	<60	Fisher ⁷
	Severinghaus-type	<600	MetrOhm ⁸
H_2S	Amperometric	<10	Unisense ⁹
	Amperometric	<25	Sulfilogger ¹⁰

2. ADDITIONAL EXPERIMENTAL RESULTS

Figure S1. Calculation of TDS from measured H_2S and pH at fixed TDS concentration while varying the sample pH in the range of 6-8. H_2S was measured using a fast amperometric microsensor ($t_{90} < 10$ s) while pH was simultaneously measured with an optical sensor ($t_{90} < 60$ s). The sample pH was modified by additions of defined amounts of HCl or NaOH in time intervals of 30 s.

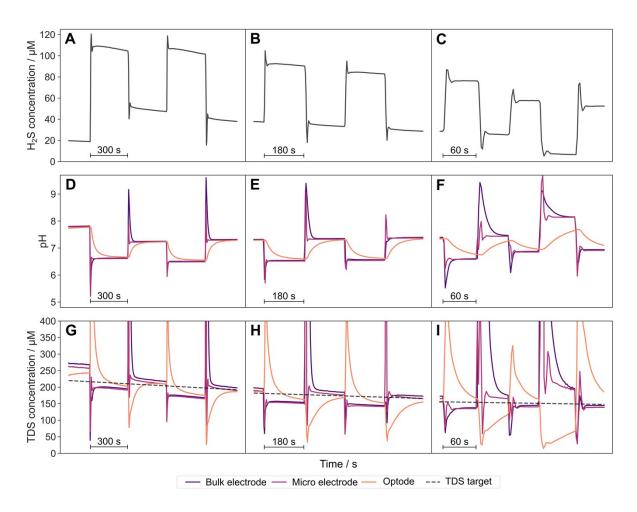
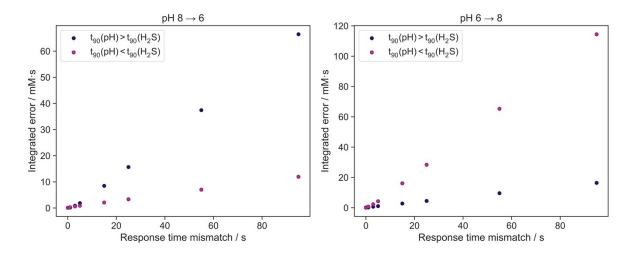



Figure S2. Calculation of TDS from measured H_2S and pH at fixed TDS concentration while varying the sample pH in the range of 6-8. H_2S was measured using a fast amperometric microsensor ($t_{90} < 10$ s) while pH was simultaneously measured with three different methods: bulk electrode, micro electrode and optode (response time: micro electrode < bulk electrode < optode). The sample pH was modified by additions of defined amounts of HCl or NaOH in time intervals of 5 min (A, D, G), 3 min (B, E, H) and 1 min (C, F, I).

Figure S3. Integrated error at different response time mismatches, varying either the response time of the pH or H_2S sensor. Results are shown for a decrease (**left**) and an increase of 2 pH units (**right**). Target TDS concentration = 200 μ M; pK_a = 7.

3. REFERENCES

- PyroScience GmbH | pH, https://www.pyroscience.com/en/products/ph, (accessed 21 June 2023).
- 2 Presens | Optical pH Sensors, https://www.presens.de/products/ph/sensors, (accessed 21 June 2023).
- 3 Krohne Group | pH sensors and measuring systems, https://krohne.com/en/products/process-analytics/analytical-sensors-measuring-systems/ph-sensors-measuring-systems, (accessed 21 June 2023).
- 4 Unisense | pH microelectrode for research applications, https://unisense.com/products/ph-microelectrode/, (accessed 21 June 2023).
- Metrohm | 780/781 pH/ion meters, https://www.metrohm.com/en_us/products/ph-ion-measurement/Laboratory-ion-pH-meters.html, (accessed 21 June 2023).
- 6 Hach | A-ISE sc Low cost ISE Ammonium probe (immersion) with RFID, https://ie.hach.com/a-ise-sc-low-cost-ise-ammonium-probe-immersion-with-rfid-10-m-cable/product?id=26371051351, (accessed 21 June 2023).
- 7 Thermo Scientific | Orion High-Performance Ammonia Electrode, https://www.fishersci.com/shop/products/orion-high-performance-ammonia-electrode/13643500, (accessed 21 June 2023).
- 8 NH3-selective gas membrane electrode (low conc.) | Metrohm, https://www.metrohm.com/en_us/products/6/0506/60506100.html, (accessed 21 June 2023).
- 9 Unisense | H₂S Microsensor for hydrogen sulfide research, https://unisense.com/products/H₂S-microsensor/, (accessed 21 June 2023).
- SulfiLogger | H₂S sensor, https://sulfilogger.com/sulfilogger-sensor/, (accessed 21 June 2023).