Supporting information

Effects of additives on performance of a laser-induced graphene

sensor modified with ZrO2 particle for OP detection

Huiyang Xu^{1,2}, Chuang Guo³, Weijian Yuan², Wenna Zhang¹, Qiu Sun^{1,*}, Jianfeng Wu^{4,*}, Xuelin Zhang^{2,*}

- ¹ School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- ² School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
- ³ Beijing Spacecrafts, Beijing, 100194, China
- ⁴ State Key Laboratory of Toxicology and Medical Countermeasures and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China

*Corresponding Author: sunqiu@hit.edu.cn; ammswjf@hotmail.com; zhangxuelin@hit.edu.cn

Supporting Equations

Equation S1

Randles-Sevcik:1

$$I_p = 2.69 \times 10^5 n^{\frac{3}{2}} A D_0^{\frac{1}{2}} v^{\frac{1}{2}} C ; \qquad (1-1)$$

Where I_p is the peak current (A), *n* is the number of electrons transferred during the redox process, *A* is the electroactive area of the electrode (cm²), D_0 is the diffusion coefficient (6.73×10⁻⁶ cm² s⁻¹), and *C* is the concentration of the probe in solution (5×10⁻⁶ cm³). From this equation the surface active area is calculated to a bare LIG electrode of 0.100 cm² and the surface active area of 0.0286 cm² for a bare GCE electrode.

Equations S2

Nicholson's:2

The kinetic parameter (Ψ) of infinite order can be calculated using the following equation, whose value depends on the peak potential separation ΔE_{p} .

$$\Psi = k^{0} \left(\frac{D_{0}}{D_{r}}\right)^{\frac{\alpha}{2}} \left(\frac{RT}{nFD_{0}v\pi}\right)^{\frac{1}{2}}$$
(1-2)

where D_0/D_r is the ratio of diffusion coefficient of oxidation and reduction forms of electroactive substances, α is the transfer coefficient, R is the molar gas constant (8.314 J K⁻¹ mol⁻¹), T is the temperature, n is the number of electrons transferred in the electrochemical reaction, v is the scanning rate (V s⁻¹), F is the Faraday constant (96489 C mol⁻¹). Here, D_0/D_r can be simplified as:

$$\Psi = k^0 \left(\frac{RT}{FDv\pi}\right)^{\frac{1}{2}}; \tag{1-3}$$

Since the reaction is a one-electron transfer process, Ψ depends on ΔE_p and can be caculated by the following formula where X is equal to ΔE_p *n.

$$\Psi = \frac{-0.6288 + 0.0021X}{1 - 0.017X}; \tag{1-4}$$

Calculated from the above equations, $k^0=0.000825$ cm² s⁻¹.

Equations S3

Laviron:³

The CV curve also conveys the determination of the apparent electron transfer coefficient α that can be calculated from the Laviron equation for quasi-reversible reactions.

$$E = k + \frac{RT\ln\nu}{\alpha nF} ; \qquad (1-5)$$

where *R* is the molar gas constant of 8.314 J K⁻¹, *T* was 298 K, *F* is the Faraday's constant of 96485 C mol⁻¹, *k* is a constant and *n* is the number of electrons transferred. The apparent electron transfer rate constant k_s can be calculated from the following equation.

$$\lg k_s = \alpha \lg (1-\alpha) + (1-\alpha) \lg \alpha - \lg \frac{RT}{nFv} - (1-\alpha)\alpha \frac{nF\Delta E}{2.303RT} ; \qquad (1-6)$$

Supporting Figures

Fig. S1 Bare LIG electrode.

Fig. S2 CVs of the GCE varying scan rate from 10 to 100 mV s⁻¹ in 0.1 M KCI containing 5 mM K_3 [Fe(CN)₆] (a); Linear relationship between I_p and $v^{1/2}$ for GCE (b).

Fig. S3 CVs of varying concentrations of CS (a); CVs of varying loadings of ZrO_2NPs with CS as binder (b) in 0.1 M PBS (pH=7.4) containing 2.5 µg ml⁻¹ MP at the scan rate of 0.1 V s⁻¹.

Fig. S4 Linear relationship between E_p and In(v) for LIG and ZrO_2 - β -CD/LIG.

Fig. S5 CVs of ZrO₂-β-CD/LIG modified by different β-CD concentrations (a); CVs of ZrO₂-β-CD/LIG modified with different loading amounts of ZrO₂ (b); CVs of ZrO₂-β-CD/LIG at various times of adsorption (c); CVs of ZrO₂-β-CD/LIG at various temperatures in 0.1 M PBS (pH=7.4) containing 2.5 µg ml⁻¹ MP at the scan rate of 0.1 V s⁻¹ (d).

References

- K. D. Caetano, D. S. da Rosa, T. M. Pizzolato, P. A. M. dos Santos, R. Hinrichs, E. V. Benvenutti, S. L. P. Dias, L. T. Arenas and T. M. H. Costa, *Micropor Mesopor Mat*, 2020, 309.
- 2. I. Lavagnini, R. Antiochia and F. Magno, *Electroanalysis*, 2004, 16, 505-506.
- 3. S. Sain, S. Roy, A. Mathur, V. M. Rajesh, D. Banerjee, B. Sarkar and S. S. Roy, *ACS Applied Nano Materials*, 2022, **5**, 17516-17525.