# A comprehensive analysis of library preparation methods shows high heterogeneity of extrachromosomal circular DNA but distinct chromosomal amount levels reflecting different cell states

## 1. Supplementary tables and figures

| Sample ID   | Total<br>mapped | mtDNA       | eccDNA number<br>(Junctional tag | Identical iunction | eccDNAs<br>with 90% | eccDNA<br>number |
|-------------|-----------------|-------------|----------------------------------|--------------------|---------------------|------------------|
| Sumple ID   | reads           | content (%) | >1)                              | site               | overlap of          | (Junctional      |
|             | Teads           |             | - 1)                             | site               | sequences           | tag $\geq 1$ )   |
| S-M-R-1     | 44509774        | 4.16        | 4614                             | 28                 | 174                 | 32887            |
| S-M-R-2     | 69804373        | 3.83        | 6412                             | 28                 | 1/4                 | 55234            |
| S-P-R-1     | 65869445        | 0.13        | 5091                             | 106                | 212                 | 51250            |
| S-P-R-2     | 57227911        | 0.20        | 5278                             | 100                | 213                 | 32486            |
| S-N-R-1     | 66139198        | 69.94       | 2003                             | 104                | 210                 | 7642             |
| S-N-R-2     | 100442167       | 78.24       | 2704                             | 194                | 210                 | 9821             |
| S-non-R-1   | 63909412        | 66.70       | 749                              | 0                  | 5                   | 7790             |
| S-non-R-2   | 52860791        | 61.51       | 1989                             | 0                  | 3                   | 11265            |
| Tn5-M-R-1   | 117325408       | 2.43        | 9996                             | 55                 | 220                 | 52470            |
| Tn5-M-R-2   | 110636048       | 1.94        | 8816                             | 33                 | 230                 | 43530            |
| Tn5-P-R-1   | 101089780       | 0.046       | 14871                            | 15                 | 172                 | 53507            |
| Tn5-P-R-2   | 68096033        | 0.074       | 13421                            | 43                 | 172                 | 45754            |
| Tn5-N-R-1   | 124984899       | 48.37       | 6966                             | 20                 | 07                  | 20989            |
| Tn5-N-R-2   | 97204441        | 59.85       | 7004                             | 29                 | 91                  | 20688            |
| Tn5-non-R-1 | 113601795       | 52.10       | 5312                             | 10                 | 02                  | 24606            |
| Tn5-non-R-2 | 114435314       | 46.39       | 6666                             | 18                 | 85                  | 30066            |
| Tn5-M-1     | 39962730        | 6.75        | 386                              | 10                 | 10                  | 31575            |
| Tn5-M-2     | 42562810        | 6.17        | 204                              | 10                 | 12                  | 19888            |
| Tn5-P-1     | 44833118        | 2.33        | 178                              | 5                  | (                   | 17077            |
| Tn5-P-2     | 43915152        | 1.53        | 276                              | 3                  | 0                   | 15137            |
| Tn5-N-1     | 35764335        | 87.70       | 1                                | 0                  | 0                   | 1085             |
| Tn5-N-2     | 37139503        | 86.76       | 4                                | 0                  | U                   | 837              |
| Tn5-non-1   | 36794114        | 85.29       | 1                                | 0                  | 0                   | 195              |
| Tn5-non-2   | 36025804        | 83.40       | 0                                | U                  | U                   | 114              |

### Supplementary Table 1. Number of identified eccDNA by different methods.

|             | Number of genes harbor by eccDNA | Overlap genes |  |  |
|-------------|----------------------------------|---------------|--|--|
| Sample ID   | (Junctional tag >1)              | number        |  |  |
| S-M-R-1     | 295                              | 22            |  |  |
| S-M-R-2     | 455                              | 32            |  |  |
| S-P-R-1     | 533                              | 2             |  |  |
| S-P-R-2     | 383                              | 2             |  |  |
| S-N-R-1     | 100                              | 1             |  |  |
| S-N-R-2     | 53                               | 1             |  |  |
| S-non-R-1   | 103                              | 0             |  |  |
| S-non-R-2   | 119                              | 0             |  |  |
| Tn5-M-R-1   | 550                              | 1             |  |  |
| Tn5-M-R-2   | 536                              | 1             |  |  |
| Tn5-P-R-1   | 979                              | 0             |  |  |
| Tn5-P-R-2   | 471                              | 9             |  |  |
| Tn5-N-R-1   | 479                              | 2             |  |  |
| Tn5-N-R-2   | 591                              | 2             |  |  |
| Tn5-non-R-1 | 358                              | 0             |  |  |
| Tn5-non-R-2 | 313                              | 0             |  |  |
| Tn5-M-1     | 17                               | 0             |  |  |
| Tn5-M-2     | 4                                | 0             |  |  |
| Tn5-P-1     | 7                                | 7             |  |  |
| Tn5-P-2     | 125                              | /             |  |  |
| Tn5-N-1     | 0                                | 0             |  |  |
| Tn5-N-2     | 0                                | 0             |  |  |
| Tn5-non-1   | 0                                | 0             |  |  |
| Tn5-non-2   | 0                                | U             |  |  |

Supplementary Table 2. Number of genes harbor by eccDNA.

Supplementary Table 3. Number of identified eccDNA by Flec.

| Seconda ID      | eccDNA | eccDNA/Mb | mtDNA content | Multiple fragments |
|-----------------|--------|-----------|---------------|--------------------|
| Sample ID       | number | reads     | (%)           | eccDNA number      |
| ONT-Flec-P-1    | 16988  | 1724.24   | 0.02          | 2851               |
| ONT- Flec-P-2   | 19221  | 1523.97   | 0.04          | 3207               |
| ONT- Flec-non-1 | 6233   | 776.72    | 56.83         | 319                |
| ONT- Flec-non-2 | 8361   | 900.46    | 53.93         | 456                |

| supplemental j la |          | i oi iun pusses i | causi            |              |                      |
|-------------------|----------|-------------------|------------------|--------------|----------------------|
| Sample ID         | Total    | >1 full passag    | Percentage       | >2 full      | Percentage of        |
|                   | mapped   | ≥1 Iun passes     | of $\geq 1$ full | ≥2 Iuli      | $\geq 2$ full passes |
|                   | reads    | Teads             | passes reads     | passes reads | reads                |
| ONT-Flec-P-1      | 9852438  | 251228            | 2.55%            | 128263       | 1.30%                |
| ONT-Flec-P-2      | 12612434 | 318534            | 2.53%            | 159776       | 1.27%                |
| ONT-Flec-non-1    | 8024724  | 75423             | 0.94%            | 23747        | 0.30%                |
| ONT-Flec-non-2    | 9285234  | 108846            | 1.17%            | 39462        | 0.42%                |
|                   |          |                   |                  |              |                      |

Supplementary Table 4. Number of full passes reads.

## Supplementary Table 5. Number of identified eccDNA by CReSIL.

| Sample ID    | eccDNA number | Multiple fragments eccDNA number |
|--------------|---------------|----------------------------------|
| CReSIL-P-1   | 22649         | 7810                             |
| CReSIL-P-2   | 25889         | 9246                             |
| CReSIL-non-1 | 14377         | 8650                             |
| CReSIL-non-2 | 15576         | 8740                             |

Supplementary Table 6. Comparison of different bioinformatics tools.

|        | ON       | T-P-1      | ON                | Т-Р-2      | ONT      | -non-1     | ONT-non-2 |            |  |
|--------|----------|------------|-------------------|------------|----------|------------|-----------|------------|--|
|        | single   | eccDNAs    | single            | eccDNAs    | single   | eccDNAs    | single    | eccDNAs    |  |
| Method | fragment | with 90%   | vith 90% fragment |            | fragment | with 90%   | fragment  | with 90%   |  |
|        | eccDNA   | overlap of | eccDNA            | overlap of | eccDNA   | overlap of | eccDNA    | overlap of |  |
|        | number   | sequences  | number            | sequences  | number   | sequences  | number    | sequences  |  |
| Flec   | 14137    | 9102       | 16014             | 2040       | 5914     | 1700       | 7905      | 2404       |  |
| CReSIL | 14839    | 8192       | 16643             | 8949       | 5727     | 1/88       | 6836      | 2484       |  |
|        |          |            |                   |            |          |            |           |            |  |

| Supplementary Table 7. Number of identified eccDNA in different cell line |
|---------------------------------------------------------------------------|
|---------------------------------------------------------------------------|

| Cell lines | Total manual mode  | aaaDNA mumban | number of eccDNAs with 90%    |  |  |  |  |  |
|------------|--------------------|---------------|-------------------------------|--|--|--|--|--|
| Centimes   | Total mapped reads | eccDNA number | overlap of sequences in GES-1 |  |  |  |  |  |
| GES-1      | 72691769           | 7828          | 7828                          |  |  |  |  |  |
| HepG2      | 51760640           | 9083          | 44                            |  |  |  |  |  |
| HL7702     | 68848781           | 3714          | 11                            |  |  |  |  |  |
| MDA-MB-453 | 84996581           | 32969         | 33                            |  |  |  |  |  |
| MCF-12A    | 77703215           | 1021          | 5                             |  |  |  |  |  |

|             | S-M-R-1 | S-M-R-2 | S-P-R-1 | S-P-R-2 | S-N-R-1 | S-N-R-2 | S-non-R-1 | S-non-R-2 | Tn5-M-R-1 | Tn5-M-R-2 | Tn5-P-R-1 | Tn5-P-R-2 | Tn5-N-R-1 | Tn5-N-R-2 | Tn5-non-R-1 | Tn5-non-R-2 | Tn5-M-1 | Tn5-M-2 | Tn5-P-1 | Tn5-P-2 | Tn5-N-1 | Tn5-N-2 | Tn5-non-1 | Tn5-non-2 |
|-------------|---------|---------|---------|---------|---------|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-------------|-------------|---------|---------|---------|---------|---------|---------|-----------|-----------|
| S-M-R-1     | 1       | 1       | 1       | 1       | 0.99    | 0.99    | 4         | 4         | 1         | 4         | 0.99      | 0.99      | 0.99      | 0.98      | 4           | 0.99        | 0.99    | 0.99    | 1       | - 1     | 0.92    | 0.97    | 0.96      | 0.95      |
| S-M-R-2     | 1       | 1       | 1       | 1       | 0.99    | 1       | 0.99      | 0.99      | 0.99      | 0.99      | 0.98      | 0.98      | 0.98      | 0.98      | 0.99        | 0.98        | 0.99    | 0.99    | 0.99    | 1       | 0.89    | 0.95    | 0.97      | 0.97      |
| S-P-R-1     | 1       | 1       | 1       | 1       | .1      | 1       | 4         | 0.99      | 0.99      | 1         | 0.98      | 0.99      | 0.99      | 0.99      | 0.99        | 0.99        | 0.99    | 0.99    | 0.99    | 1       | 0.91    | 0.96    | 0.97      | 0.95      |
| S-P-R-2     | 1       | 1       | 1       | 1       | 1       | 1       | 1         | 4         | 1         | 1         | 0.99      | 0.99      | 0.99      | 0.99      | 4.          | 0.99        | 1       | 1       | 1       | 1       | 0.92    | 0.97    | 0.98      | 0.95      |
| S-N-R-1     | 0.99    | 0.99    | 1       | 1       | 1       | 1       | 0.99      | 0.99      | 0.99      | 0.99      | 0.98      | 0.99      | 0.99      | 1         | 0.99        | 0.98        | 0.99    | 0.99    | 0.99    | 0.99    | 0.89    | 0.95    | 0.98      | 0.95      |
| S-N-R-2     | 0.99    | 1       | 1       | 1       | 1       | 1       | 0.99      | 0.99      | 0.99      | 0.99      | 0.97      | 0.98      | 0.99      | 0.99      | 0.99        | 0.98        | 0.99    | 0.99    | 0.99    | 0.99    | 0.89    | 0.95    | 0.98      | 0.97      |
| S-non-R-1   | 1       | 0.99    | 1       | 1       | 0.99    | 0.99    | 1         | 1         | 1         | 1         | 0.99      | 1         | 0.99      | 0.99      | 1           | 1           | 1       | 1       | 1       | 1       | 0.93    | 0.98    | 0.97      | 0.93      |
| S-non-R-2   | 1       | 0.99    | 0.99    | 1       | 0.99    | 0.99    | 1         | 1         | 1         | 1         | 0.99      | 1         | 0.98      | 0.98      | 1           | 1           | 0.99    | 0.99    | 1       | 0.99    | 0.94    | 0.98    | 0.97      | 0.94      |
| Tn5-M-R-1   | 1       | 0.99    | 0.99    | 1       | 0.99    | 0.99    | 1         | 1         | 1         | 1         | 0.99      | 1         | 0.99      | 0.99      | 1           | 1           | 0.99    | 1       | 0.99    | 0.99    | 0.93    | 0.98    | 0.96      | 0.93      |
| Tn5-M-R-2   | 1       | 0.99    | 1       | 1       | 0.99    | 0.99    | 1         | 1         | 1         | 1         | 0.99      | 1         | 0.99      | 0.99      | 1           | 1           | 1       | 1       | 1       | 1       | 0.93    | 0.98    | 0.97      | 0.94      |
| Tn5-P-R-1   | 0.99    | 0.98    | 0.98    | 0.99    | 0.98    | 0.97    | 0.99      | 0.99      | 0.99      | 0.99      | 1         | 1         | 0.99      | 0.98      | 1           | 1           | 1       | 1       | 0.99    | 0.99    | 0.96    | 0.99    | 0.96      | 0.89      |
| Tn5-P-R-2   | 0.99    | 0.98    | 0.99    | 0.99    | 0.99    | 0.98    | 1         | 1         | 1         | 1         | 1         | 1         | 0.99      | 0.99      | 1           | 1           | 1       | 1       | 1       | 0.99    | 0.96    | 0.99    | 0.96      | 0.91      |
| Tn5-N-R-1   | 0.99    | 0.98    | 0.99    | 0.99    | 0.99    | 0.99    | 0.99      | 0.98      | 0.99      | 0.99      | 0.99      | 0.99      | 11        | 1         | 0.99        | 0.99        | 0.99    | 0.99    | 0.99    | 0.98    | 0.91    | 0.96    | 0.98      | 0.92      |
| Tn5-N-R-2   | 0.98    | 0.98    | 0.99    | 0.99    | 1       | 0.99    | 0.99      | 0.98      | 0.99      | 0.99      | 0.98      | 0.99      | 1         | 1         | 0.98        | 0.98        | 0.99    | 0.99    | 0.99    | 0.98    | 0.9     | 0.95    | 0.98      | 0.92      |
| Tn5-non-R-1 | 1       | 0.99    | 0.99    | 1       | 0.99    | 0.99    | 1         | 1         | 1         | 1         | 1         | 1         | 0.99      | 0.98      | 1           | 1           | 1       | 1       | 1       | 0.99    | 0.96    | 0.99    | 0.96      | 0.92      |
| Tn5-non-R-2 | 0.99    | 0.98    | 0.99    | 0.99    | 0.98    | 0.98    | 1         | -1        | 1         | 1         | 1         | 1         | 0.99      | 0.98      | 1           | 1           | 0.99    | 1       | 0.99    | 0.99    | 0.96    | 0.99    | 0.96      | 0.91      |
| Tn5-M-1     | 0.99    | 0.99    | 0.99    | 1       | 0.99    | 0.99    | 1         | 0.99      | 0.99      | 1         | 1         | 1         | 0.99      | 0.99      | 1           | 0.99        | 1       | 4       | 1       | 1       | 0.95    | 0.98    | 0.97      | 0.92      |
| Tn5-M-2     | 0.99    | 0.99    | 0.99    | 1       | 0.99    | 0.99    | 1         | 0.99      | 1         | 1         | 1         | 1         | 0.99      | 0.99      | 1           | 1           | 1       | 1       | 1       | 1       | 0.94    | 0.98    | 0.97      | 0.92      |
| Tn5-P-1     | 1       | 0.99    | 0.99    | 1       | 0.99    | 0.99    | 1         | 1         | 0.99      | 1         | 0.99      | 1         | 0.99      | 0.99      | 1           | 0.99        | 1       | 1       | 1       | 1       | 0.94    | 0.98    | 0.97      | 0.93      |
| Tn5-P-2     | 1       | 1       | 1       | 1       | 0.99    | 0.99    | 1         | 0.99      | 0.99      | 1         | 0.99      | 0.99      | 0.98      | 0.98      | 0.99        | 0.99        | 1       | 1       | 1       | 1       | 0.92    | 0.97    | 0.97      | 0.94      |
| Tn5-N-1     | 0.92    | 0.89    | 0.91    | 0.92    | 0.89    | 0.89    | 0.93      | 0.94      | 0.93      | 0.93      | 0.96      | 0.95      | 0.91      | 0.9       | 0.95        | 0.96        | 0.95    | 0.94    | 0.94    | 0.92    | 1       | 0.98    | 0.87      | 0.77      |
| Tn5-N-2     | 0.97    | 0.95    | 0.96    | 0.97    | 0.95    | 0.95    | 0.98      | 0.98      | 0.98      | 0.98      | 0.99      | 0.99      | 0.96      | 0.95      | 0.99        | 0.99        | 0.98    | 0.98    | 0.98    | 0.97    | 0.98    | 1       | 0.94      | 0.87      |
| Tn5-non-1   | 0.96    | 0.97    | 0.97    | 0.98    | 0.98    | 0.98    | 0.97      | 0.97      | 0.96      | 0.97      | 0.96      | 0.96      | 0.98      | 0.98      | 0.96        | 0.96        | 0.97    | 0.97    | 0.97    | 0.97    | 0.87    | 0.94    | 1         | 0.93      |
| Tn5-non-2   | 0.95    | 0.97    | 0.95    | 0.95    | 0.95    | 0.97    | 0.93      | 0.94      | 0.93      | 0.94      | 0.89      | 0.91      | 0.92      | 0.92      | 0.92        | 0.91        | 0.92    | 0.92    | 0.93    | 0.94    | 0.77    | 0.87    | 0.93      | 1         |

Supplementary Figure 1. Pearson correlation analysis of the distribution of eccDNA in different genomic elements in all treatment samples.

S, sonication; Tn5, Tn5 transposase tagmentation; M, MssI restriction enzymes; P, PacI restriction enzymes; N, NotI restriction enzymes; non, non-digested; R, rolling-circle amplification (RCA).



Supplementary Figure 2. A comparison of the percentage of eccDNA-annotated genes in different groups.

S, sonication; Tn5, Tn5 transposase tagmentation.



**Supplementary Figure 3. Comparison of junctional nucleotide motif patterns in each replicate samples.** The typical pattern of a pair of high frequency trinucleotid segments with 4-bp "spacers" in non-RCA replicate samples (Tn5-M and Tn5-P), while RCA samples were atypical. S, sonication; Tn5, Tn5 transposase tagmentation; M, MssI restriction enzymes; P, PacI restriction enzymes.



Supplementary Figure 4. Violin plots depicting the length distribution of eccDNA in different cell lines.



Supplementary Figure 5. Comparison of normalized counts of eccDNAs on each chromosome in all treatment samples.

S, sonication; Tn5, Tn5 transposase tagmentation; M, MssI restriction enzymes; P, PacI restriction enzymes; N, NotI restriction enzymes; non, non-digested; R, rolling-circle amplification (RCA); ONT, Oxford Nanopore Technologies.





# Supplementary Figure 6. Manhattan plot of the distribution of eccDNAs across chromosomes in all treatment samples.

S, sonication; Tn5, Tn5 transposase tagmentation; M, MssI restriction enzymes; P, PacI restriction enzymes; N, NotI restriction enzymes; non, non-digested; R, rolling-circle amplification (RCA); ONT, Oxford Nanopore Technologies.

### 2. Supplementary Methods

### 2.1 EccDNA detecting method for cell types experimental

Genomic DNA was isolated from different cell types using the Allprep DNA/RNA Mini Kit (Qiagen) according to the manufacturer's instructions. To purify eccDNAs, Plasmid-Safe ATP-dependent DNase (Epicentre) was used to digest linear DNA at 37 °C for 5 days, with the addition of ATP and DNase every 24 hours. To confirm the elimination of linear chromosomal DNA, we performed a quantitative polymerase chain reaction (qPCR) to amplify a chromosomal marker to evaluate linear chromosomal DNA following exonuclease digestion.

The purified eccDNAs were used as templates for rolling-circle amplification. A 20  $\mu$ l reaction was set up using 1 mM dNTPs, 10 U Phi29 DNA polymerase (New England Biolabs), 50  $\mu$ M Exo-resistant random primer (Thermo Fisher), 0.02 U inorganic pyrophosphatase (Thermo Fisher), and 1× Phi29 DNA polymerase buffer. The reaction was performed at 30 °C for 18 h and purified using AMPure XP beads (Beckman). The amplified DNA was sheared by sonication (Covaris) and then the NEBNext Ultra II DNA Library Prep Kit for Illumina (New England Biolabs) was used to prepare the library. The Illumina Novaseq 6000 platform was used to sequence these libraries in 150 bp paired-end mode.

The sequencing reads were assessed by FastQC and filtered by Trimmomatic. Then the clean data were aligned to the human reference genome (GRCh38) using the default settings of BWA-MEM. The Circle-map software was then used to identify eccDNA with parameters of "Circle-Map Realign -i alignment/sample.bam -qbam alignment/sample\_qname.bam -sbam alignment/sample\_coord.bam -fasta refFa".

### 2.2 Bioinformatics tools and parameters

For NGS data was aligned by BWA-MEM with parameters of "bwa mem <indxbase> <in1.fq> <in2.fq>".

eccDNA identified by Circle finder tools and downloaded from

https://github.com/pk7zuva/Circle\_finder/blob/master/circle\_finder-pipeline-bwamem-samblaster.sh with parameters of "bash circle finder-pipeline-bwa-memsamblaster.sh 10 hg38.fa in1.fastq in2.fastq 10 sampleID hg38".

For cell lines sequencing data, Circle-Map tools (<u>https://github.com/iprada/Circle-Map</u>) was used to identified eccDNA with parameters of "Circle-Map Realign -i alignment/sample.bam -qbam alignment/sample\_qname.bam -sbam alignment/sample coord.bam -fasta refFa".

Nanopore sequencing data was aligned by minimap2 with parameters of "-ax map-ont –c --secondary=no". eccDNA calling used Flec tools and downloaded from <u>https://github.com/YiZhang-lab/eccDNA\_RCA\_nanopore</u> with parameters of "./eccDNA\_RCA\_nanopore.py --fastq mapping/sample\_name.fastq.gz --paf mapping/sample\_name.paf --info <info.tsv> --seq <seq.fa> --var <var.tsv> --reference <path/to/reference.fa> --verbose | tee <out.log>".

As comparison, CReSIL tools (<u>https://github.com/visanuwan/cresil</u>) was also used to identify eccDNA with parameters of "cresil trim -t 8 -fq sample.fq -r reference.mmi" and "cresil identify -t 8 -minrsize 40 -depth 1 -break 1 -fa reference.fa -fai reference.fa.fai -fq sample.fq -trim sample/trim.txt".

BedTools was used to genomic element annotation with parameters of "intersectBed a sample.bed -b element.bed -wa". The parameters of "bedtools getfasta –fi refFa –bed sample.bed –fo sample.fa" was used to extract sequences. The parameters of "bedtools intersect -f 0.90 -r -wa -wb -a sample1.bed -b sample2.bed" was used to identify eccDNA with 90% overlap of sequences.