Electronic Supplementary Material

Ratiometric fluorescent aptasensor for convenient detection of ochratoxin A in beer and orange juice

Jie Yu, Wenhan Zhang, Shuheng Ai, Chao Wang* and Pengfei Shi*

College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China.

*Corresponding authors, e-mails: shipengfei913@163.com; wangchao@lyu.edu.cn

Fig. S1. Effects of incubation time on (A) F_{FAM} and (B) F_{Cy3} . Assay buffer containing 20 mmol/L Tris-HCl (pH 7.4), 5 mmol/L CaCl₂, 80 mmol/L NaCl and 0.1% (V/V) tween20 was used. OTA concentration was 500 nmol/L. For measurement of fluorescence intensity of FAM (F_{FAM}), excitation/emission was 485 nm/518 nm. For measurement of fluorescence intensity of Cy3 (F_{Cy3}), excitation/emission was 530nm/563 nm.

Fig. S2. Effects of concentration of CaCl₂ in assay buffer on (A) F_{FAM} and (B) F_{Cy3} . Assay buffer containing 20 mmol/L Tris-HCl (pH 7.4), 80 mmol/L NaCl, 0.1% (V/V) tween20 and different concentrations of CaCl₂ was used. OTA concentration was 500 nmol/L. For measurement of fluorescence intensity of FAM (F_{FAM}), excitation/emission was 485 nm/518 nm. For measurement of fluorescence intensity of Cy3 (F_{Cy3}), excitation/emission was 530 nm/563 nm.

Fig. S3. Effects of NaCl concentration in assay buffer on (A) F_{FAM} and (B) F_{Cy3} . Assay buffer containing 20 mmol/L Tris-HCl (pH 7.4), 5 mmol/L CaCl₂, 0.1% (V/V) tween20 and different concentrations of NaCl was used. OTA concentration was 500 nmol/L. For measurement of fluorescence intensity of FAM (F_{FAM}), excitation/emission was 485 nm/518 nm. For measurement of fluorescence intensity of Cy3 (F_{Cy3}), excitation/emission was 530nm/563 nm.

Strategy	LOD	Detection range	Analysis time	Ref.
A ratio-based FRET analysis method	3.9 nmol/L	3.9-300 nmol/L	95 min	[20]
Aptamer-based molecular beacon	3.9 nmol/L	3.9-500 nmol/L	15 min	[22]
Graphene oxide nanosheet based fluorescent aptasensor	0.03 nmol/L	0.1-74.1 nmol/L	85 min	[23]
Colorimetric aptasensor based on gold nanoparticle	5 nmol/L	6.3-750 nmol/L	70 min	[38]
Exonuclease-assisted recycling amplification	0.96 nmol/L	5-200 nmol/L	40 min	[39]
Fluorescence anisotropy assay	3 nmol/L	3 nmol/L-3 µmol/L	40 min	[40]
Label-free aptasensor using SYBR gold and exonuclease	16.5 nmol/L	20-500 nmol/L	60 min	[41]
Ratiometric fluorescent aptasensor	0.3 nmol/L	0.6 nmol/L-5 μmol/L	30 min	this work

Table S1 Comparison of some aptamer-based detection methods for OTA

References cited by above Table S1:

- [20] Y. Yuan, M. Song, Y. Cao, Q. Huang and F. Lu, *Microchem. J.*, 2023, 184, 108163.
- [22] H. Yu and Q. Zhao, *Molecules*, 2022, 27, 8267.
- [23] Q. Zhang, L. Z. Kang, P. F. Yue, L. C. Shi, M. Wang, L. D. Zhou, H. P Zhao and W. J. Kong, *Food Chem. X*, 2022, **14**, 100308.
- [38] Y. He, F.Y. Tian, J. Zhou, Q.Y. Zhao, R.J. Fu and B.N. Jiao, *J. Hazard. Mater.*, 2020, **388**, 121758.
- [39] M. Liu, X.Y. Li, B.X. Li, J.X. Du and Z.Q. Yang, Microchim. Acta, 2020, 187, 46.
- [40] Q. Zhao, Q. Lv and H.L. Wang, Anal. Chem., 2014, 86, 1238-1245.
- [41] L. Lv, D.H. Li, R.J. Liu, C.B. Cui and Z.J. Guo, Sens. Actuator B-Chem., 2017, 246, 647-652.