Electronic Supplementary Material

Repaired-Driven DNA Tetrahedral Nanomachine Combined with DNAzyme for 8-oxo guanine DNA Glycosylase Activity Assay, Drug Screening and Intracellular Imaging.

Yun Qiu^{1#}, Bin Liu^{2#}, Wenchao Zhou¹, Xueqing Tao², Yang Liu¹, Linxi Mao¹, Huizhen Wang¹,

Hanwen Yuan¹, Yupei Yang¹, Bin Li¹, Wei Wang^{1*} Yixing Qiu^{1**}

1. TCM and Ethnomedicine Innovation & Development International Laboratory, Academician

Atta-ur-Rahman Belt and Road Traditional Medicine Research Center, School of Pharmacy, Hunan

University of Chinese Medicine, Changsha 410208, China.

2. College of Biology, Hunan University, Changsha 410082, China.

#These authors contributed to the work equally and should be regarded as joint first authors

Correspondence to: Yixing Qiu, Wei Wang.

Dr. Yixing Qiu

E-mail address: qiuyixing@hnucm.edu.cn

School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China

Tel: +86 15674925204

Dr. Wei Wang

E-mail address: wangwei402@hotmail.com

School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China

Tel: +86136-5743-8606; Fax: +86731-88458227

Fig.S1. Native PAGE gel (8%) for the 80xoG-DNA glycosylase assay. Lane 1: DTDN; Lane 2: DTDN+ 8-0xoG-Locker; Lane 3: DNAzyme; Lane 4: DNAzyme+MB; Lane 5: MB; Lane 6: DTDN+MB; Lane 7: DTDN+8-0xoG-Locker+ 8-0xoG DNA glycosylase; Lane 8: DTDN+ 8-0xoG-Locker +MB; Lane 9: DTDN+ 8-0xoG-Locker +MB + 8-0xoG-DNA glycosylase; [L1] = [DZ-L2] = [L3] = [L4] = 100 nM, [8-0xoG-Locker] = 150 nM, [MB] = 100 nM, [8-0xoG-DNA glycosylase] = 80 U/mL.

Name	Sequences (5'-3')					
L1	ATTTATCACCCGCCATAGTAGACGTATCACCAGGCAGTTGAGACGAACATTCCTAAGTCTGAA					
D7 L 2	CATCTCTTCTCCGAGCCGGTCGAAATAGTTGGTTTTTTTACATGCGAGGGTCCAATACCGACGA					
DL-L2	TTACAGCTTGCTACACGATTCAGACTTAGGAATGTTCG					
1.2	ACTACTATGGCGGGTGATAAAACGTGTAGCAAGCTGTAATCGACGGGAAGAGCATGCCCATC					
Lo	C					
L4	ACGGTATTGGACCCTCGCATGACTCAACTGCCTGGTGATACGAGGATGGGCATGCTCTTCCCG					
8-oxoG-Locker	CGACCG8oxoGCTCGG8oxoGAAGAGA					
MB	FAM-CCACCACTCACCAACTAT(A)rGGAAGAGATGTTGTGGTGG-BHQ1					
DNAzyme	CATCTCTTCTCCGAGCCGGTCGAAATAGTTGGT					

Table S1. The sequences of oligonucleotide strands

Enzyme	Buffer (1×)	рН (25°С)
Fpg	10 mM Bis Tris progane-HCl, 10 mM MgCl2, 1mM DTT, 100µg/mL	7.0
	BSA	
T4	50 mM Tris-HCl, 10 mM MgCl ₂ , 1 mM ATP, 10 mM DTT	pH 7.5

Table S2. The composition and pH of buffers for the enzymes

DN

IA Ligase						
UDG	20 mM Tris-HCl, 1 mM EDTA, 1 mM DTT	8.0				
hAAG	10 mM Tris-HCl, 100 mM KCl, 1 mM DTT, 0.1 mM EDTA, 50%					
Glycerol						
	0.5% Tween® 20, 0.5% IGEPAL® CA-630					
APE1	50 mM KAc, 20 mM Tric-Ac, 10 mM Mg (Ac)2, 1 mM DTT	7.9				

Code	Compound	Molecular	Stucture
	Name	formula	
a	Chikusetsusaponin IV	$C_{47}H_{74}0_{18}$	
b	Chikusetsusaponin IVa	$C_{42}H_{66}O_{14}$	
c	Chikusetsusaponin IV methyl ester	$C_{48}H_{76}O_{18}$	
d	Ginsenoside Rg1	$C_{42}H_{72}O_{14}$	
e	Chikusetsusaponin IVa methyl ester	C ₄₃ H ₆₈ O ₁₄	

Table S3. The detailed information of 14 natural compounds.

f	Chikusetsusaponin V methyl ester	C ₄₉ H ₇₈ O ₁₉	
g	Ginsenoside Rg2	$C_{42}H_{72}0_{13}$	
h	Ginsenoside F1	$C_{36}H_{62}O_9$	
i	Ginsenoside Rd	C ₄₈ H ₈₂ O ₁₈	HO + OH +
j	Ginsenoside Rh1	C ₃₆ H ₆₂ O ₉	
k	Ginsenoside Rh4	$C_{36}H_{60}O_8$	

Table S4. The comparison of the presented work with other reported works for

Analytical method	Signal	Detection limit	Material synthesis time	Reaction step	Reaction time	Application	Reference
DNAzyme and rGO based biosensor	Fluorescence	0.66 U/mL	5h	3	170min	Activity assay, drug screening, and bacterial imaging	1
Closing-upon-repair DNA tetrahedron nanoswitch	Fluorescence	0.3653 U/mL	160min	1	90min	Intracellular	2
Pyrrolo-dC modified duplex DNA probe	Fluorescence	1.25 U/mL	25min	1	60min	Activity assay	3
DNAzyme-mediated cascade amplification platform	Fluorescence	0.14 U/mL	/	2	155min	Activity assay, drug screening, and serum sample analysis	4
Target-induced self-primed rolling circle amplification and magnetic nanoprobes	Fluorescence	1.033 U/mL	1	5	5.75h	Activity assay and diluted human serum assay	5
Enzyme-catalytic cleavage reaction of DNA substrate	Nanopore analysis	0.01 U/mL	20min	2	135min	Cellular hOGG1 Activity	6
Repaired-driven three- dimensional DNA nanomachine combining with DNAzyme	Fluorescence	0. 52 U/mL	45min	2	155min	Activity Assay, Drug Screening, and Intracellular Imaging.	This work

detecting 8-oxoG DNA glycosylase activity.

References

- Y. Qiu, W. Dang, J. Fan, T. Zhou, B. Li, Y. Liu, Y. Qin, C. Tong, M. Daniyal and W. Wang, *Talanta*, 2020, 218, 121158.
- 2. Y. Wu, M. Wu, M. Liu, D. Wang, L. Wang, T. Weng and J. Han, Anal. Chim. Acta, 2022, 1196,

339481.

- 3. C. Y. Lee, K. S. Park and H. G. Park, Biosens. Bioelectron., 2017, 98, 210-214.
- 4. W. Dang, C. Tong, Y. Yang, Y. Liu, B. Liu, H. Zhou and W. Wang, Analyst, 2019, 144, 1731-1740.
- J. Song, F. Yin, X. Li, N. Dong, Y. Zhu, Y. Shao, B. Chen, W. Jiang and C.-z. Li, *Analyst*, 2018, 143, 1593-1598.
- 6. J. Shang, Z. Li, L. Liu, D. Xi and H. Wang, ACS Sens., 2018, 3, 512-518.