Supporting Information

Laser-induced graphene-based electrochemical

immunosensor for nucleic acid methylation detection

Jingyi Guo^a, Mei Zhao^a, Chen Chen^a, Fang Wang^{*a} and Zilin Chen^a

^a School of Pharmaceutical Sciences, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan, 430071, China. Email: fwang@whu.edu.cn

Corresponding author:

Prof. Fang Wang

Tel: 86-27-68759829, fax: 86-27-68759850.

E-mail address: fwang@whu.edu.cn

Contents :

- 1. IR characterization of LIG electrode.
- 2. Different concentration of HT.
- 3. Table of electrochemical strategies for m6A-RNA and 5mC-ssDNA detection.

Fig. S1 FTIR spectrum of LIG.

Fig. S2 Different concentration of HT.

Electrode	Target	Signal amplification strategy	Linear range	LOD	Refs
AuNPs/Au	5mC-DNA	HRP-IgG for catalyzing HQ/H ₂ O ₂ redox system	1 fM-10 nM	0.84 fM	1
GO-Fe ₃ O ₄ - CD/GCE	5mC-DNA	ALP-Avidin-PAMAM	0.01–50 nM	3.2 pM	2
MB-SPCE	5mC-DNA	HRP for catalyzing HQ/H ₂ O ₂ redox system	4.0–250 pM	1.2 pM	3
Microfluidic chip	5mC-DNA	MBD1 conjugated with SiNP causing signal current decrease	50 pM–500 nM	11.8 pM	4
Au electrode	m6A-RNA	Immune competition of m6A-RNA and m6A-DNA with RNase helped signal amplification	0.05–200 nM	16 pM	5
AuNPs/GCE	m6A-RNA	Decreased signal of [Fe(CN) ₆] ³⁻ /[Fe(CN) ₆] ⁴⁻ caused by antibody recognizing methylated RNA	0.01-10 nM	2.57 pM	6
Au electrode	m6A-RNA	Competition of m6A-RNA and m6A- DNA-PtCo and PtCo catalyzing H ₂ O ₂ reduction	0.005-100nM	2.1 pM	7
AuNPs/Au	m6A-RNA	RNA ligase helping hybridization and HRP-IgG-AuNPs catalyzing H ₂ O ₂ -HQ redox system	10 fM-10 nM	3.35 fM	8
AuNPs/LIG	5mC- ssDNA	Biotinylated-antibody binding SA-	0.01–10 nM	9.53 pM	This work
AuNPs/LIG	m6A-RNA	system	0.01–10 nM	2.81 pM	This work

Table S1. Electrochemical strategies for m6A-RNA and 5mC-ssDNA detection.

Reference

J. Huang, S. Zhang, F. Mo, S. S. Su, X. Chen, Y. Li, L. C. Fang, H. Huang, J. Deng, H. M. Liu, X. L.
Yang and J. S. Zheng, Biosens Bioelectron, 2019, 127, 155-160.

 Y. L. Zhou, W. J. Jiang, H. W. Wu, F. Liu, H. S. Yin, N. Lu and S. Y. Ai, Microchim Acta, 2019, 186, 488.

 E. Povedano, A. Valverde, V. R. Montiel, M. Pedrero, P. Yanez-Sedeno, R. Barderas, P. San Segundo-Acosta, A. Pelaez-Garcia, M. Mendiola, D. Hardisson, S. Campuzano and J. M. Pingarron, Angew Chem Int Ed Engl, 2018, 57, 8194-8198.

4. S. A. Hong, Y. J. Kim, S. J. Kim and S. Yang, Biosens Bioelectron, 2018, 107, 103-110.

T. Dai, Q. L. Pu, Y. C. Guo, C. Zuo, S. L. Bai, Y. J. Yang, D. Yin, Y. Li, S. C. Sheng, Y. Y. Tao, J.
Fang, W. Yu and G. M. Xie, Biosens Bioelectron, 2018, 114, 72-77.

 H. S. Yin, Y. L. Zhou, Z. Q. Yang, Y. L. Guo, X. X. Wang, S. Y. Ai and X. S. Zhang, Sensor Actuat B-Chem, 2015, 221, 1-6.

7. X. Y. Ou, Q. L. Pu, S. C. Sheng, T. Dai, D. Gou, W. Yu, T. Y. Yang, L. Dai, Y. J. Yang and G. M. Xie, Microchim Acta, 2020, 187, 31.

 Z. Li, B. C. Li, H. S. Yin, Q. H. Zhang, H. Y. Wang, H. Fan and S. Y. Ai, J Electroanal Chem, 2017, 804, 192-198.