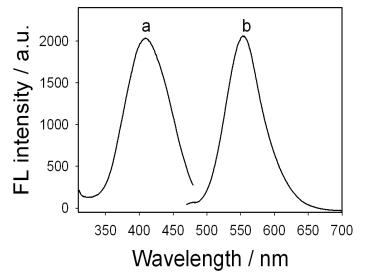
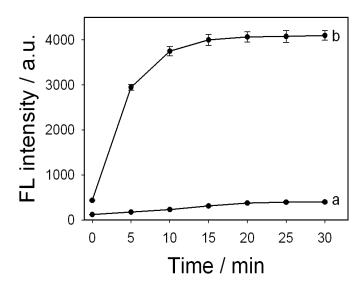
Electronic Supplementary Information

for


Fenton-like reaction triggered chemical redox-cycling signal amplification for ultrasensitive fluorometric detection of H_2O_2 and glucose

Lu Sun, Lin-Ge Chen, Hai-Bo Wang*


College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, P. R. China

E-mail address: wanghaibohn@163.com (H.-B. Wang).

Supporting Figures

Fig. S1 Fluorescence excitation spectra (a) and fluorescence emission spectra (b) of pure DAP

Fig. S2 Relationship between reaction time and fluorescence intensity at 555 nm in the presence of Cu^{2+} + OPD (a) and Cu^{2+} + H_2O_2 + OPD (b).

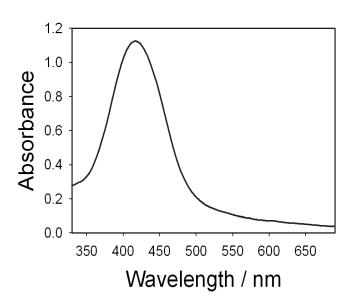
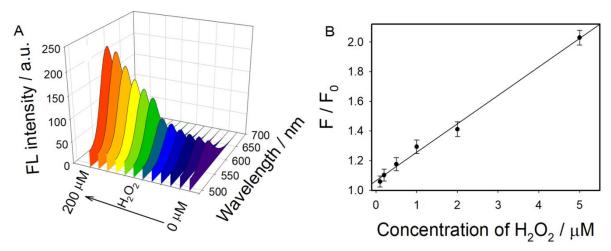



Fig. S3 UV-Vis absorption spectra of pure DAP.

Fig. S4 (A) Fluorescence spectra of 200 μM OPD in the presence of increasing H_2O_2 concentrations from bottom to top, the concentrations of H_2O_2 are 0, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 200 μM, respectively. (B) The calibration curve between the F/F_0 and the H_2O_2 concentrations. The error bars are the standard deviation of three repetitive measurements.