1	Supporting Information
2	In Situ Hg ²⁺ Improved Peroxidase-like Activity and Triggered "on"
3	Oxidase-like Activity of Yolk-shell Co ₃ S ₄ Microspheres for Detection
4	of Hg ²⁺
5	
6	Kang Qin ^b , Ying Chu ^b , Chang Xu ^b , Guijiang Li ^b , Xixi Zhu ^b , Gaochao Fan ^c
7	Zhongdong Yang ^{a,*} and Qingyun Liu ^{b,*}
8	
9	^a Shandong University of Science and Technology Hospital, Shandong University of
10	Science and Technology, Qingdao 266590, China
11	^b College of Chemical and Biological Engineering, Shandong University of Science
12	and Technology, Qingdao 266590, China
13	^c Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and
14	Molecular Engineering, Qingdao University of Science and Technology, Qingdao
15	266042, China
16	* Corresponding Author
17	E-mail: skd994016@sdust.edu.cn (Z. Yang); qyliu@sdust.edu.cn(Q. Liu)
18	Tel: +86 0532 86057757
19	Number of pages: 14
20	Number of Figures: 11
21	Number of Tables: 2
22	Number of Videos: 1
	S1

23 Associated Content

- 24 Experimental Section (Materials, Instruments, Preparation of Co₃S₄ yolk-shell
- 25 microspheres, Assay of the peroxidase-like activity of Co₃S₄, Steady-state kinetics,
- 26 Assay of the oxidase-like activity, Assay of detection of Hg^{2+});
- 27 XRD pattern of Co₃S₄ microspheres (a),SEM image of precursor (b), SEM image of
- 28 Co_3S_4 (c), and TEM image of Co_3S_4 (d) (Fig. S1);
- 29 BET data of Co₃S₄ yolk-shell spheres (Fig. S2);
- 30 Assay of catalytic activity of Co_3S_4 (Fig. S3);
- 31 (a) Assay of the peroxidase-like activity of Co_3S_4 , (b) Fluorescence intensity, (c) and
- 32 (d) ESR data of Co_3S_4 (Fig. S4);
- 33 Assay of the oxidase-like activity of Co₃S₄ (Fig. S5);
- 34 Steady-state kinetic (Fig. S6);
- 35 Assay of the oxidase-like activity (Fig. S7);
- 36 TEM image of HgS/Co₃S₄ (a), XRD data of Co₃S₄ and HgS/Co₃S₄ (b), and TEM-EDX
- 37 mapping images of HgS/Co_3S_4 (c) (Fig. S8);
- 38 XPS spectra of Co₃S₄ and HgS/Co₃S₄ (Fig. S9);
- 39 (a) and (b) Assay of the oxidase-like activity, (c) ESR data of HgS/Co₃S₄ (Fig. S10);
- 40 Selectivity of sensor (Fig. S11);
- 41 Comparison of K_m (Table S1);
- 42 Comparison of Hg^{2+} detection (Table S2);
- 43 Color changes of the reaction systems in the presence of Hg^{2+} or in the absence of

44 Hg²⁺ (Video S1).

45 Experimental Section

46 Materials

HgCl₂, thioacetamide (TAA) and 3,3',5,5'-tetramethylbenzidine dihydrochloride 47 (TMB) were commercially purchased from Macklin (Shanghai, China). 48 Fe(NO₃)₃•9H₂O, Co(NO₃)₂•6H₂O, NaCl, KCl, MgSO₄, H₂O₂ (30 wt%), Terephthalic 49 acid, disodium ethylenediaminetetraacetic acid (EDTA-2Na), Lactose (Lac), D-50 histidine (Hi), isopropanol (IPA), p-benzoquinone (PBQ), Dserine (Ser), L-arginine 51 (Arg), and Sucrose (Suc) were obtained from Sinopharm Chemical Reagent Co., Ltd. 52 (Shanghai, China). 53

54 Instruments

The surface state of elements and the phase of Co₃S₄ yolk-shell microspheres 55 were systematically characterized by X-ray photoelectron spectroscopy (XPS, 56 Thermo ESCALAB 250Xi, USA) and X-ray diffractometer (Cu-K α radiation, 2θ = 57 10-80°, 5°/min), respectively. The morphology was investigated by the transmission 58 electron microscope with the energy dispersive X-ray spectroscopy (TEM, FEI, 59 APREO, USA). Fluorescent spectra and UV-vis absorption spectra were recorded on 60 a fluorescence spectrophotometer (FL, Hitachi F-4600, Japan) and a UV-8000PC 61 spectrophotometer (Puxi, TU 1810, China), respectively. The Bru-nauer-Emmett-62 Teller surface were analyzed on a Micromeritics ASAP 2460 at 77.3 K. 63

64 Preparation of Co₃S₄ yolk-shell microspheres

In a typical synthesis process, 0.2734 g Co(NO₃)₂•6H₂O were dissolved in the mixed solvents glycerol (7.5 mL) and isopropanol (52.5 mL) resulting a clear pink solution. The formed mixture was then transferred into Teflon-sealed autoclave and
heated at 150 °C for 24 h. Natural cooling to room temperature, the purple precipitate
was obtained via centrifugation, rinsed with absolute ethanol six times and dried at 60
°C.

For the synthesis of hollow Co_3S_4 yolk-shell microspheres, 0.0300 g purple precipitate was dispersed into 20.0 mL ethanol solution including 0.0500 g thioacetamide (TAA). Then, the resulting solution was sealed in Teflon-sealed autoclave and performed at 180 °C for 12 h. After centrifugation and rinsed with distilled water and ethanol several times, the hollow Co_3S_4 coreshell nanospheres were finally synthesized.¹

77 Assay of the peroxidase-like activity of Co₃S₄

Typically, 200 μ L of Co₃S₄ aqueous suspension, 200 μ L of H₂O₂ and 200 μ L of TMB were added into 1400 μ L buffer solution in turn, and the absorbance at 652 nm was recorded after reaction for 2 min. The optimal catalytic conditions of the Co₃S₄ nanozyme were evaluated by tuning pH values of buffer solutions as well as the various temperatures.

83 Steady-state kinetics

The catalytic kinetics of Co_3S_4 dual nanozymes was studied by changing the concentration of the substrates TMB or H_2O_2 , and keep the other unchanged, respectively. Herein, the kinetic study was carried out using 200 µL of Co_3S_4 microspheres (0.3 mg/mL) in a reaction volume of 200 µL with 0.1 mM TMB or 25 mM H_2O_2 . K_m and V_{max} were calculated by the double reciprocal graph of the 89 Michaelis-Menten equation, that is, $1/v = (K_m/V_{max}) \times (1/[S]) + 1/V_{max}$, where V_{max} 90 and v represent the maximum reaction velocity and initial speed, as well as [S] and 91 K_m represent the substrate concentration and Michaelis constant, respectively.

92 Assay of the oxidase-like activity

Briefly, 200 μ L of Co₃S₄, 200 μ L of Hg²⁺ and 200 μ L of TMB were added into 1400 μ L buffer solution reacted for 2 min, and the absorbance at 652 nm was recorded. Similar to the study of peroxidase-like activity of Co₃S₄, it was necessary to study the influences of the experimental temperatures and pH values on the oxidaselike activity.

98 Assay of detection of Hg²⁺

99 Colorimetric Hg²⁺ detection based on the peroxidase-like activity of Co₃S₄

Firstly, different concentrations of Hg²⁺ (200 μ L) and peroxidase-like nanozyme Co₃S₄ (200 μ L, 0.3 mg/mL) were added to HAc-NaAc buffer (pH = 4) and incubated at room temperature for 2 min. Then, add H₂O₂ (1 mM, 200 μ L) together with TMB (0.1 mM, 200 μ L) into the above mixture reacted for 2 min and report the absorbance at 652 nm.

105 Colorimetric Hg²⁺ detection based on the oxidase-like activity of Co₃S₄

Different concentrations of Hg²⁺ (200 μ L), Co₃S₄ (200 μ L, 0.3 mg/mL) and TMB (0.1 mM, 200 μ L) were added into HAC-NaAC buffer (pH = 5), which was incubated at room temperature for 2 min. Then, the absorbance at 652 nm was reported.

109 XPS spectra of HgS/Co₃S₄

110 From Fig. S9a, the elements Hg, Co, and S are detected in the final production

HgS/Co₃S₄. The Co 2p peak in HgS/Co₃S₄ shows a positive shift of 1.0 eV due to the influence of the introduced Hg²⁺ (Fig. S9b). The typical peaks centered at 161.4 and 162.2 eV are S 2p1/2 and S 2p3/2, respectively, indicating that the oxidation state of S²⁻ exists in Co₃S₄ (Fig. S9c). ² For HgS/Co₃S₄, a decrease in the main peak at 165.9 eV is detected (Fig. S9c), indicating the influence of the produced HgS. In addition, as seen from Fig. S9d, two peaks at 100.22 and 104.22 eV in HgS/Co₃S₄ indicate that Hg mainly exists in the 2+ oxidation state. ³ Thereof, it can be suggested that the produced HgS is attached to Co₃S₄ subsequently.

121 Fig. S1 XRD pattern of Co₃S₄ microspheres(a); SEM image of precursor (b); Images of SEM (c)

124 Fig. S2 N_2 adsorption/desorption isotherms (a) and the pore volume (b) of Co_3S_4 yolk-shell

125 spheres.

128 Fig. S3 Influences of the catalytic activity of Co₃S₄ on pH (a) and temperature (b), respectively.

132 **Fig. S4** (a) Effects of various active scavengers during the catalytic oxidation of TMB by Co_3S_4 133 under natural light. (b) Fluorescence intensity varies with the amount of Co_3S_4 . Fluorescent tests: 134 Co_3S_4 as catalyst, H_2O_2 24 mM, TA 0.5 mM, pH of 4, 20 °C, 30 min. (c) Generation of $\cdot O_2^-$ by 135 Co_3S_4 nanozymes in the presence of 1mM H_2O_2 (methanol system), and (d) photogenerated hole

139 Fig. S5 Influences of pH (a) and temperature (b) on the oxidase-like activity of Co_3S_4 ,

140 respectively.

141

143 Fig. S6 Steady-state kinetic assay of Hg^{2+} triggered "ON" Co_3S_4 oxidase-like activity by (a)

144 varying the concentrations of TMB from 20 to 200 μ M with a fixed amount of Hg²⁺ (1 mM) (b) is

145 corresponding double reciprocal curve towards TMB.

146

148 Fig. S7 Comparison of the oxidase-like activity whether precipitate (HgS/Co₃S₄) or supernate

149 taken from the reaction system after Hg^{2+} mixed with Co_3S_4 under natural light.

150

151

153 Fig. S8 TEM image of HgS/Co_3S_4 (a), XRD data of Co_3S_4 and HgS/Co_3S_4 (b), and TEM-EDX

¹⁵⁴ mapping images of HgS/Co_3S_4 (c), respectively.

Fig. S9 High-resolution XPS spectra of Co₃S₄ and HgS/Co₃S₄: survey (a), Co 2p (b), S 2p (c) and 157

158 Hg 4f (d), respectively.

162 Fig. S10 (a) The influences on the oxidase-like activity of Hg-Co₃S₄ under air-saturated or N₂163 saturated conditions (inset: the corresponding photographs); (b) In the presence or absence of PBQ.
164 (c) Generation of •O₂⁻ by HgS/Co₃S₄ without the presence of H₂O₂ (methanol system).

167 **Fig. S11** The selectivity of the Co_3S_4 -based sensor towards Hg^{2+} (1.0 mM) in the presence of 168 interferents (100 mM).

Nanozymes	K _m /mM	Ref.		
Co-V MMO (oxidase)	0.44	4		
CeO ₂ (oxidase)	0.80	5		
Selenium (oxidase)	8.30	6		
Co ₃ S ₄ (peroxidase)	0.82	This work		
Co ₃ S ₄ -Hg ²⁺ (oxidase)	0.22	This work		

170 Table S1 Comparison of K_m of nanozymes towards TMB substrate.

172 Table S2 Comparison of Hg²⁺ detection based on Hg²⁺-triggered Co₃S₄ oxidase-like activity with

Nanozymes	LOD (nM)	Ref.
GO-Ag (fluorimetric)	590	7
Ag/GO (colorimetric)	338	8
p-PDA/Ag(colorimetric)	800	9
Ficuscaricastem-Ag(colorimetric)	1060	10
Co ₃ S ₄ (peroxidase)	170	This work
Co ₃ S ₄ -Hg ²⁺ (oxidase)	55	This work

173 the previous studies.

174

175

176 Video S1 Color changes of the reaction systems in the presence of Hg^{2+} or in the absence of Hg^{2+} .

177 Left system: Buffer solution (pH = 4), Co_3S_4 (0.3 mg/L), TMB (1 mM) and Hg²⁺ (1 mM).

178 **Right system:** Buffer solution (pH = 4), Co_3S_4 (0.3 mg/L) and TMB (1 mM).

179

180 References

181 1. L. Shen, L. Yu, H. B. Wu, XY. Yu, X. Zhang and X. W. Lou, <i>Nature Communications</i> ,	2015, 6	5 .
---	----------------	------------

- 182 2. H. Chen, J. Jiang, L. Zhang, H. Wan, T. Qi and D. Xia, *Nanoscale*, 2013, **5**, 8879-8883.
- 183 3. J. S. Lee, M. S. Han and C. A. Mirkin, *Angew Chem Int Ed Engl*, 2007, **46**, 4093-4096.

184	4.	Y. Wang, C. Chen, D. Zhang and J. Wang, Applied Catalysis B: Environmental, 2020, 261.
-----	----	--

- 185 5. A. Asati, S. Santra, C. Kaittanis, S. Nath and J. M. Perez, *Angew Chem Int Ed Engl*, 2009, 48,
 186 2308-2312.
- 187 6. L. Guo, K. Huang and H. Liu, *Journal of Nanoparticle Research*, 2016, **18**.
- S. D. Hiremath, K. K. Maiti, N. N. Ghosh, M. Banerjee and A. Chatterjee, ACS Applied Nano
 Materials, 2020, 3, 3071-3079.
- 1908.A. Syed, N. Marraiki, S. Al-Rashed, A. M. Elgorban and M. T. Yassin, Spectrochim Acta A Mol191Biomol Spectrosc, 2021, 244, 118844.
- 192 9. A. Kalam, A. G. Al-Sehemi, S. Alrumman, M. Assiri, M. F. M. Moustafa, P. Yadav and M.
 193 Pannipara, *Green Chemistry Letters and Reviews*, 2018, **11**, 484-491.
- 194 10. S. A. Pande, B. Pandit and B. R. Sankapal, *Materials Letters*, 2017, **209**, 97-101.