Supporting Information

Palladium nanospheres embedded metal-organic frameworks to enhance the ECL efficiency of 2,6-dimethyl-8-(3carboxyphenyl)4,4'-difluoroboradiazene in aqueous solution for ultrasensitive Cu²⁺ detection

Shu-Shu Song, Jia-Le Zhan, Hao-Tian Zhu, Jing-Yi Bao, Ai-Jun Wang, Pei-Xin Yuan*, Jiu-Ju Feng*

Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China

*Corresponding authors: ypxdr@zjnu.edu.cn (P.X. Yuan); jjfeng@zjnu.cn (J.J. Feng).

Experimental

1. Reagents and materials

Herein, 2,4-dimethylpyrrole, 4-formylbenzoic acid, acetonitrile (ACN), tetrabutylammonium perchlorate (TBAP), methyl alcohol, trifluoroacetic acid (TFA), dichlorodicyanobenzoquinone (AR), triethylamine (TEA), boron trifluoride diethyl etherate (AR), ethyl acetate (AR), methyl alcohol (AR), palladium chloride (PdCl₂), 1,2,4,5-benzenetetramine (BTA), sodium borohydride (NaBH₄), aqueous ammonia (NH₃·H₂O), 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 2,2,6,6-tetramethyl-4piperidinol (TMP), p-benzoquinone, NaOH, MgSO₄, and K₂S₂O₈ were obtained from Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). Phosphate buffer solution (PBS, pH 7.40, 0.10 M KH₂PO₄/Na₂HPO₄) was prepared with ultrapure water, which was obtained from a Millipore water purification system (\geq 18 M Ω , Milli-Q, Millipore) and used throughout all of the assays.

2. Apparatus

The morphology and structure of the samples were characterized by scanning electron microscopy (SEM) with a Hitachi S-4800 scanning electron microanalyzer. Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HR-TEM) measurements were taken on a JEM-2100F microscope operating at an acceleration voltage of 200 kV. X-ray photoelectron spectroscopy (XPS) analysis was performed on a Thermo VG ESCALAB 250 spectrometer with an Al K α X-ray irradiation (1486.6 eV) for excitation operated at 120 W, and the data were calibrated by the binding energy of C 1s. Fluorescence (FL) measurements were

conducted with an RF-6000 spectrometer (Thermo Fisher Scientific, America). ECL plots were taken with a home-made ECL spectroscopy acquiring system (consisting of an Acton SP2300i monochromator) equipped with a liquid N₂ cooled PyLoN 400BR-eXcelon digital CCD detector (Princeton Instruments, USA) and a VersaSTAT 3 electrochemical analyzer (Princeton Applied Research, USA). NMR hydrogen spectroscopy (¹H-NMR) measurement was conducted with a Bruker AMX-500 spectrometer at 600 MHz (Bruker., Germany), by employing tetramethylsilane (TMS) as the reference and deuterated acetone (C_3D_6O) as the solvent. The sample compositions were examined by liquid chromatography/mass spectrometry (LC/MS, 6230 TOF, Agilent Technologine Co., Ltd., USA) with the mobile phase (mainly containing methanol and water). Electron paramagnetic resonance (EPR) measurements were conducted on a Bruker EPR EMX plus -9.5/12 by applying a continuous excited potential of 1.50 V.

A classical three-electrode system was used in the electrochemical experiments, in which a glassy carbon electrode (GCE, $\Phi = 5$ mm) acted as the working electrode, an Ag/AgCl electrode (saturated KCl) as the reference electrode and a platinum wire as the counter electrode. Electrochemistry and ECL experiments were performed at CHI 660D electrochemical workstation (Chenhua Analytical Instrument Co., Ltd., China) and MPI-E multi-function ECL analyzer (Xi'an Remax Analytical Instrument Co., Ltd., China), respectively. Electrochemical impedance spectra (EIS) were recorded in a 0.1 M KCl solution containing 5 mM K₃[Fe(CN)₆]/K₄[Fe(CN)₆] by using an alternating voltage of 10 mV in a frequency range of 0.1 ~ 100,000 Hz.

Figure S1. The ¹H NMR plot of BET.

Figure S2. The LC/MS plot of BET.

Figure S3. (A) The ECL plot of BET acquired with 2 mM p-benzoquinone. (B) The corresponding ECL plot (curve a) and FL spectrum (curve b) of BET.

Figure S4. The (A) CV plots of BET (curve a) and BET + 2 mM acetic acid (curve b).

The (B) FL spectra of BET (curve a) and BET + acetic acid (0.5-2.0 mM, curves b-e).

Figure S5. (A) The EPR plots recorded in the 2 mM K₂S₂O₈ solution without (curve a) and with acetic acid (curve b). (B) The ECL spectrum of the BET/GCE + 2 mM K₂S₂O₈.
(C) The CV plots of the BET/GCE (curve a), BET/Pd@MOFs/GCE (curve b) and BET/Pd@MOFs/GCE + 10 mM Cu²⁺ (curve c) acquired in the PBS with 2 mM K₂S₂O₈.

Figure S6. The influences of the concentrations of the BET (A) and Pd@MOFs (B) on the ECL signals.

Method	Linear Range	LOD	Reference
FL	0.10 μM–5.00 μM	5.61 nM	1
EC	50.00 nM-12.00 μM	13.00 nM	2
PEC	1.00 nM-10.0 µM	0.40 nM	3
ECL	0.20 nM-1.00 µM	0.07 nM	4
ECL	1.0 pM-500.0 nM	0.33 pM	5
ECL	1.0 pM-100.0 pM	0.12 pM	This work

Table S1. Comparison of the analytical performances of different Cu^{2+} detection assays.

Sample	Added (pM)	Found (pM)	Recovery (%)	RSD (%)
	1.0	1.03 1.02 1.02	102.4	0.53
Lake water	10.0	9.93 9.98 10.02	99.8	4.08
	100.0	100.2 100.0 100.1	100.1	1.97

Table S2. Detection of Cu^{2+} in the Chuyang lake water sample.

References

- J. Hou, P. Jia, K. Yang, T. Bu, S. Zhao, L. Li and L. Wang, ACS Appl. Mater. Interfaces, 2022, 14, 13848–13857.
- F. F. Wang, C. Liu, J. Yang, H. L. Xu, W. Y. Pei and J. F. Ma, *Chem. Eng. J.*, 2022, 438, 135639.
- J. Li, F. Mo, L. Guo, J. Huang, Z. Lu, Q. Xu and H. Li, Sens. Actuators B Chem., 2020, 328, 129032.
- J. Chen, Q. Wang, X. Liu, X. Chen, L. Wang and W. Yang, *Chem. Commun.*, 2020, 56, 4680-4683.
- Q. Han, C. Wang, Z. Li, J. Wu, P. K. Liu, F. Mo and Y. Fu, *Anal. Chem.*, 2020, ,92, 3324–3331.