Stratification of tumour cell radiation response and metabolic signatures visualization with Raman spectroscopy and explainable Convolutional Neural Network

Alejandra M. Fuentes¹, Kirsty Milligan¹, Mitchell Wiebe¹, Apurva Narayan^{2,3}, Julian J. Lum^{4,5}, Alexandre G. Brolo⁶, Jeffrey L. Andrews⁷, and Andrew Jirasek^{1,*}

¹Department of Physics, The University of British Columbia Okanagan Campus, Kelowna, Canada

- ³Department of Computer Science, The University of British Columbia Okanagan Campus, Kelowna, Canada
- ⁴Department of Biochemistry and Microbiology, The University of Victoria, Victoria, Canada
- ⁵Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, Canada
- ⁶Department of Chemistry, The University of Victoria, Victoria, Canada
- ⁷Department of Statistics, The University of British Columbia Okanagan Campus, Kelowna, Canada

*andrew.jirasek@ubc.ca

²Department of Computer Science, Western University, London, Canada

(a) Convolution filter numbers: 64 (first layer, stride 2), 64 (second layer, stride 3); filter size 7x1; 10-neuron fully connected layer before classification layer.

O F

0.0

(b) Convolution filter numbers: 64 (first layer, stride 2), 64 (second layer, stride 2); filter size 5x1.

(c) Convolution filter numbers: 32 (first layer, stride 2), 32 (second layer, stride 3); filter size 6x1.

(d) Convolution filter numbers: 64 (first layer, stride 3), 128 (second layer, stride 3); filter size 7x1.

Figure S1. Grad-CAM saliency maps of H460, MCF7, and LNCaP cell Raman spectra exposed to single-fraction doses ranging 6-10 Gy and collected 3 days post-irradiation for four different CNN architectures, showing consistency in active peaks.

Figure S2. Raman spectra of (a)glycogen, (b)asparagine, and (c) phosphatidylcholine.