Electronic Supplementary Information (ESI)

for

DNA Octahedral Amplifier for Endogenous CircRNA Detection

and Bioimaging in Living cells and its Biomarker Study

Rong Feng,^a Shengrong Yu,^{*ab} Zhiling Qian,^a Yiming Wang,^a Gege Xie,^a Bingqian Li,^a Jingwen Chen,^a Yong-Xiang Wu,^{*ab} and Keqi Tang^{*ab}

^{a.} Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced

Mass spectrometry and Clinical Application, School of Material Science and

Chemical Engineering, Ningbo University, Ningbo 315211, China.

^{b.} Zhenhai Institute of Mass Spectrometry, Ningbo 315211, China.

* To whom correspondence should be addressed.

E-mail: yushengrong@nbu.edu.cn wuyongxiang@nbu.edu.cn tangkeqi@nbu.edu.cn

Table of contents

1. Apparatus	S-3
2. AFM imaging	8-3
3. Selective experiments	S-3
4. Cell culture and CCK-8 assay	8-3
5. Flow cytometry assay	S-4
6. Real-time quantitative PCR (RT-qPCR)	S-4
7. Supplementary figures and tables	8-5
8. References	S-15

1. Apparatus

The T20S Series Thermal Cycler for Porous Plates was purchased from Long Gene (China), the Fire-Reader V10 Gel Imager was purchased from UVITEC (UK). Fluorescence measurements were recorded using an RF-6000 spectrophotometer (Japan), and AFM characterization of the sample was observed by Bruker Multimode V8 Scanning Probe Microscopy (USA). Cell Counting Kit-8 (CCK-8) was performed at 450 nm using Thermo Fisher Scientific's Varioskan Flash microplate reader (China). Confocal fluorescence images of cells were obtained using FV3000 laser-scanning confocal microscopy (Olympus, Japan).

2. AFM imaging

 $10 \ \mu\text{L}$ of DOA nanoprobe (20 nM) was deposited on the surface of freshly cleaved mica, then the solution dried at room temperature, then the samples were observed on a Multimode V8 using Scan Asystmode.

3. Selective experiments

Various oligonucleotide targets (25 nM) including circHIPK3, miRNA21, miRNA26a, miRNA203, and miRNA1246 were added in 300 μ L Tris-HCl buffer (20 mM Tris-HCl, 50 mM MgCl₂ and 1.0 mM EDTA, pH=7.6) containing 50 nM DOA nanoprobe, respectively. Then the mixture was kept at 37 °C for 3 h to react. The fluorescence emission spectra were recorded from 550 to 750 nm by the excitation wavelength at 540 nm. All fluorescence experiments were repeated 3 times.

4. Cell culture and CCK-8 assay

A549 and H1299 cells were incubated in RPMI 1640 medium containing 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin solution (100×), and HEK 293T cells were cultured using DMEM medium containing 10% FBS and 1% penicillin-streptomycin solution (100×). All cells were seeded in dishes and cultured at 37 °C in a humidified atmosphere including 5% CO₂ for 24 h.

The CCK-8 assay was adopted to study the cytotoxicity of the DOA nanoprobe. In details, A549 cells (8×10^3 cells/well) were cultivated in 96-well plates in a humidified

atmosphere with 5% CO₂ at 37 °C. After incubating for 24 h, the A549 cells were treated with DOA nanoprobe (0, 100, 150 nM) for 6, 12 and 24 h, respectively. Ultimately, the cells were washed with 1× PBS for three times and 90 μ L of new complete medium and 10 μ L of DMSO dissolved CCK-8 were added into each well, and incubated for 35 min. Cytotoxicity data were obtained by measuring the absorbance value (450 nm) and untreated cells were used as the negative controls.

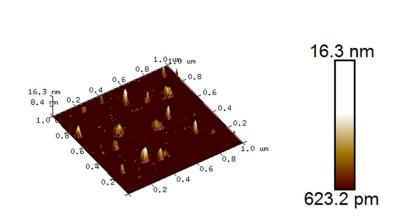
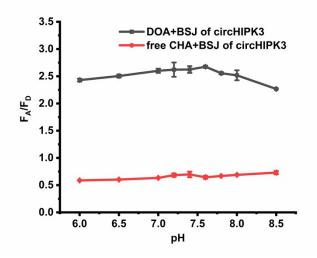
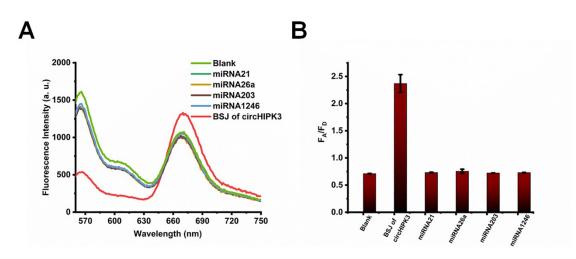
5. Flow cytometry assay

A549 cells were planted in Petri dishes and cultured in a humidified atmosphere with 5% CO₂ at 37 °C. After treatment with DOA nanoprobe (150 nM) for 6 h, the cells were detached from culture dishes using trypsin solution. Then the treated cells were centrifuged at 1000 rpm for 4 min and resuspended in PBS solution for three times. Flow Cytometry Assay was performed by BD FACSCanto Flow Cytometer (USA) using fluorescent channel Cy5 (633 nm excitation).

6. Real-time quantitative PCR (RT-qPCR)

Total RNAs were extracted from cells using Trizol reagent (Sangon Biotech Engineering Technology & Services, China) according to the manufacturer's instructions. The concentration of total RNA was detected using an ultraviolet spectrophotometer. 1.0 μ g of total RNA was used for cDNA synthesis by Hifair II 1st Strand cDNA Synthesis Super Mix for qPCR (gDNA digester plus) kit. Then qPCR was conducted by using a SYBR Green PCR Kit, and samples were run in triplicate by Roche (USA) RT-qPCR machine. The GAPDH primers were used as an internal control for RT-qPCR, and the results were analyzed using the 2^{- $\Delta\Delta$ CT} method and normalized to the GAPDH transcript. The primers used for RT-qPCR in this study are shown in Table S1.

7. Supplementary figures and tables

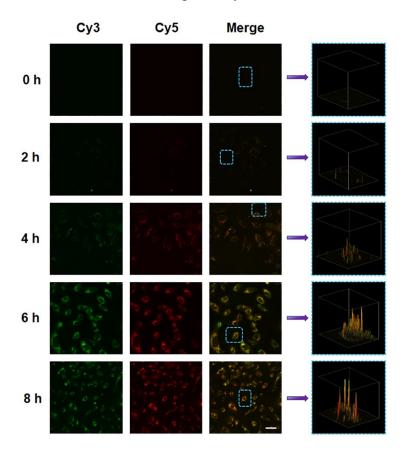

Figure S1. Characterization of DOA nanoprobe by atomic force microscopy (AFM).

Figure S2. The corresponding fluorescence intensity ratio of signal (F_A/F_D) values of DOA nanoprobe (50 nM) in Tris-HCl buffer of different pH, the mixture is incubated for 3 h at 37 °C. Mean \pm SD, n = 3.

Figure S3. (A) Fluorescence spectra and (B) histogram of the corresponding fluorescence intensity ratio (F_A/F_D) of 50 nM DOA nanoprobe towards different RNAs in Tris-HCl buffer (20 mM Tris-HCl, 50 mM MgCl₂ and 1.0 mM EDTA, pH=7.6). The concentration of DOA nanoprobe and RNAs are 50 nM and 25 nM. the mixture is incubated for 3 h at 37 °C, respectively. Mean ± SD, n = 3.

Figure S4. The optimization of incubation time for DOA nanoprobe in living cells. A549 cells are incubated with 150 nM DOA nanoprobe for different time at 37 $^{\circ}$ C for confocal microscopy imaging, scale bar is 30 μ m.

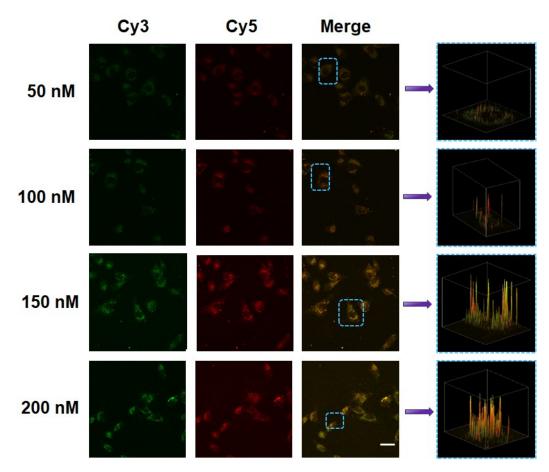
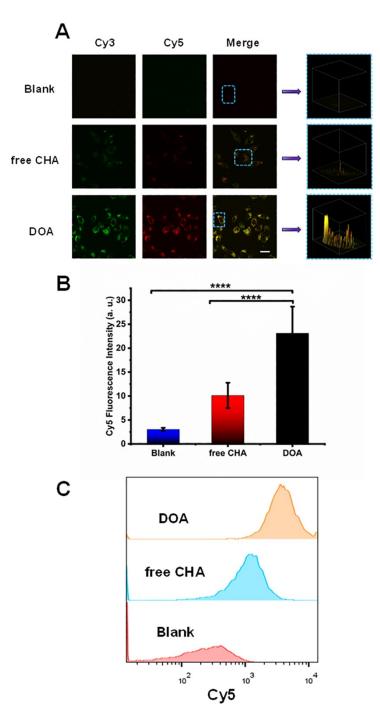
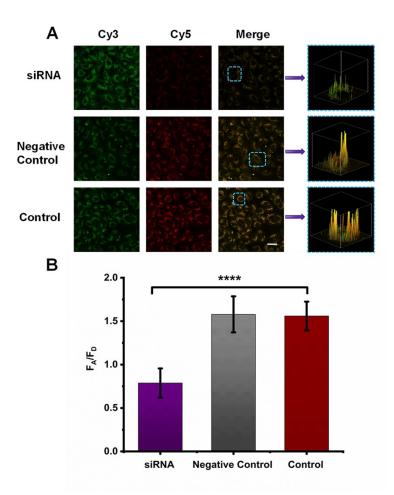




Figure S5. The optimization of concentration for DOA nanoprobe in living cells. A549 cells are incubated with DOA nanoprobe for different concentration at 37 $^{\circ}$ C for confocal microscopy imaging, scale bar is 30 μ m.

Figure S6 (A) Confocal fluorescence images of circHIPK3 in A549 cells incubated with DOA nanoprobe (150 nm) and free CHA (150 nm) for 6 h at 37 °C, respectively. Scale bar is 30 μ m. (B) Histogram of the Cy5 fluorophore fluorescence intensity of signal values. Numerical values in the graph indicate the mean value \pm SD from 20 cells. *t*-Test: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. (C) Flow cytometry assay, A549 cells are incubated with the DOA nanoprobe (150 nM) and free CHA (150 nM) for 6 h at 37 °C, respectively.

Figure S7. (A) Confocal fluorescence images of A549 cells are treated with the siRNA, scramble (Negative Control) and untreated (control) by 150 nM DOA nanoprobe. Scale bar is 30 μ m. (B) Histogram of the corresponding fluorescence intensity ratio of signal (F_A/F_D) values. Numerical values in the graph indicate the mean value ± SD from 20 cells. *t*-Test: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

	The sequence of DNA and RNA (from left to right: 5' to 3')
S-1	ATCACCCAAACCCTCAATCTGCGAGTGTCTTTGG
	CATACTTCACCAGGTTGAATCCTATGCTCGTACA
	TTGTCGCAGTTCAGATACGCTTCATACTGAGAGC
	GTTCCG
S-2	GGATACATTATACGGTGGTTTGTACGAGCATAG
	GATTCTTCCTGGTGAAGTATGCCAATTGGATCCT
	AAATTCTTGCG
S-3	ATCACCCAAACCCTCAATCTCGAAAGTGATCCA
	CCGTATAATGTATCCTTCGAGCAGCACGAACTG
	TCTTCATTCGTCGTCGTCGTAGTTCTGTAGCCTC
	TTATGCGGA
S-4	GCGTATCTGAACTGCGACTTCCGCATAAGAGGC
	TACAGTTGGACCGTAGTTAAATGACTTCGGAAC
	GCTCTCAGTATGTTTATCAATCATACGAACCGAC
	Т
S-5	CGGTCATCGTCGTCGTCGTTGCACGAATACGAA
	TACTATTCGCAAGAATTTAGGATCCTTGTCATTT
	AACTACGGTCC
S-6	CGACGACGACGATGACCGTTCTACGACGACGAC

Table S1. The sequences of DNA and RNA used in this study

	GAATGTTGACAGTTCGTGCTGCTCGTTTAGTATT
	CGTATTCGTGCTTTATCAATCATACGAACCGACT
H1	AGATTGAGGGTTTGGGTGATTTTTGAGGCCATA
	CCTGTAGTACCGACCA/iCy3-
	dT/GTGTAGATCGGTACTACAGGTA
H2	AGTACCGATCTACACA/iCy5-
	dT/GGTCGGTACTACAGGTACCATGTGTAGATTT
	AGTCGGTTCGTATGATTGAT
circHIPK3	GUAUGGCCUCACAAGUCUUGGUCUACCCACCA
	UAUGUUUAUCAAACUCAGUCAAGUGCCUUUUG
	UAGUGUGAAGAAACUCAAAGUAGAGCCAAGCA
	GUUGUGUAUUCCAGGAAAGAAACUAUCCACGG
	ACCUAUGUGAAUGGUAGAAACUUUGGAAAUUC
	UCAUCCUCCCACUAAGGGUAGUGCUUUUCAGA
	CAAAGAUACCAUUUAAUAGACCUCGAGGACAC
	AACUUUUCAUUGCAGACAAGUGCUGUUGUUUU
	GAAAAACACUGCAGGUGCUACAAAGGUCAUAG
	CAGCUCAGGCACAGCAAGCUCACGUGCAGGCA
	CCUCAGAUUGGGGCGUGGCGAAACAGAUUGCA
	UUUCCUAGAAGGCCCCCAGCGAUGUGGAUUGA
	AGCGCAAGAGUGAGGAGUUGGAUAAUCAUAGC
	AGCGCAAUGCAGAUUGUCGAUGAAUUGUCCAU

ACUUCCUGCAAUGUUGCAAACCAACAUGGGAA AUCCAGUGACAGUUGUGACAGCUACCACAGGA UCAAAACAGAAUUGUACCACUGGAGAAGGUGA CUAUCAGUUAGUACAGCAUGAAGUCUUAUGCU CCAUGAAAAAUACUUACGAAGUCCUUGAUUUU CUUGGUCGAGGCACGUUUGGCCAGGUAGUUAA AUGCUGGAAAAGAGGGACAAAUGAAAUUGUAG CAAUCAAAAUUUUUGAAGAAUCAUCCUUCUUAU GCCCGUCAAGGUCAAAUAGAAGUGAGCAUAUU AGCAAGGCUCAGUACUGAAAAUGCUGAUGAAU AUAACUUUGUACGAGCUUAUGAAUGCUUUCAG CACCGUAACCAUACUUGUUUAGUCUUUGAGAU GCUGGAACAAAACUUGUAUGACUUUCUGAAAC AAAAUAAAUUUAGUCCCCUGCCACUAAAAGUG AUUCGGCCCAUUCUUCAACAAGUGGCCACUGC ACUGAAAAAUUGAAAAGUCUUGGUUUAAUUC AUGCUGAUCUCAAGCCAGAGAAUAUUAUGUUG GUGGAUCCUGUUCGGCAGCCUUACAGGGUUAA AGUAAUAGACUUUGGGUCGGCCAGUCAUGUAU CAAAGACUGUUUGUUCAACAUAUCUACAAUCU CGGUACUACAG **BSJ** of TCGGTACTACAGGTATGGCCTCA circHIPK3

siRNA	Sense-GGUACUACAGGUAUGGCCUTT
	Antisense-AGGCCAUACCUGUAGUACCTT
circHIPK3 for human	Forward-TATGTTGGTGGATCCTGTTCGGC
	Reverse-TGGTGGGTAGACCAAGACTTGTGA
GAPDH mRNA for	Forward-CCAAGGTCATCCATGACAAC
human	Reverse-GCTTCACCACCTTCTTGATG

*Red and bold mark the recognition sequence of circRNA

Table S2. Comparison of DOA nanoprobe with other methods	Table S2.	Comparison of E	OOA nanoprobe wi	ith other methods
--	-----------	------------------------	------------------	-------------------

Method	Advantages of the DOA nanoprobe	Reference
	compared with this method	
PCR method	The DOA nanoprobe enables in situ	[1]
	monitoring intracellular circRNA, offers	
	eliminates temperature cycling and no	
	complex operation, but PCR method	
	detect RNA in cell lysates and can't reflect	
	the real-time RNA expression levels in	
	living cells.	
Northern	The DOA nanoprobe enables in situ	[2]
blotting method	detection and bioimaging in living cells,	
	and provides the spatial-temporal	
	information, but the northern blotting	

	method can only be performed in cell	
	lysate, and the northern blotting shows the	
	low sensitivity, requires large amounts of	
	RNA sample.	
RNA	The DOA nanoprobe enables in situ	[3]
sequencing	detection and bioimaging in living cells,	
(RNA-seq)	and offers the simple operation, but the	
	RNA-seq has the relatively high costs,	
	time consuming and complicated analysis	
	of data.	
Fluorescence in	FISH is only performed in fixed cells or	[4]
situ	tissues by fluorescently labeled DNA	
hybridization	probes for hybridization, and it can't	
(FISH)	provide the spatial-temporal information.	
	While the DOA nanoprobe has better	
	permeability for in situ detection and	
	bioimaging.	
Traditional	The traditional fluorescence nanoprobes	[5]
fluorescence	cannot accurately detection the low	
nanoprobes	abundance circRNA expression levels in	
	living cells, and it generates low detection	
	signal. While the DOA nanoprobe can	

	accurately detect low expression level circRNA in living cells by enzyme-free signal amplification.	
Conventional enzyme-free amplification method	signal amplification. Some enzyme-free amplification methods, such as CHA, RCA and HCR, usually depend on transfection system to deliver DNA hairpin probes into cells, it has poor biocompatibility in cell biology, and they were not possible with rigorous equal amount, which would able to affect amplification efficiency. However, the DOA nanoprobe has excellent capability	[6]
	of self-delivery without transfection agents, and enables significantly increase the efficiency of amplification reaction.	

8. References

- [1] M.R. Hasan, F. Mirza, H. Al-Hail, S. Sundararaju, T. Xaba, M. Iqbal,
 H. Alhussain, H.M. Yassine, A. Perez-Lopez and P. Tang, *PLoS One.*,
 2020, 15, e0236564.
- [2] Schneider T., S. Schreiner, C. Preußer, A. Bindereif and O. Rossbach, Methods Mol. Biol., 2018, 1724, 119-133.

- [3] X.N. Li, Z.J. Wang, C.X. Ye, B.C. Zhao, Z.L. Li, Y. Yang, J. Exp. Clin. Cancer Res., 2018, 37, 325.
- [4] M. Zhang, Z.Q. Chen, C.Y. Jiang, Y.N. Liu, J.H. Wu, L. Liu, *Talanta*, 2022, 238, 123066.
- [5] L. Zhong, S. Cai, Y. Huang, L. Yin, Y. Yang, C. Lu and H. Yang, *Anal. Chem.*, 2018, **90**, 12059-12066.
- [6] D.X. Wang, J. Wang, Y.X. Wang, Y.C. Du, Y. Huang, A.N. Tang,Y.X. Cui and D.M. Kong, *Chem. Sci.*, 2021, **12**, 7602-7622.